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Abstract— This paper discusses filtering of messages sent from a 

classified to an unclassified network using a cross domain guard. 

We discuss how we can use such a guard within the network 

architecture designed in the CoNSIS (Coalition Networks for 

Secure Information Sharing) project for use in future coalition 

operations. A guard design is presented which enforces that only 

XML messages conforming to a specific format may pass the 

guard. It also limits the message rate based on message size and 

the resulting possible covert channel. We can use this guard 

design for low data rate applications which have to communicate 

across networks of different classification. We also discuss a 

proxy device located in the unclassified network to reduce the 

required amount of communication between classified and 

unclassified network. 
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I.  INTRODUCTION  

Protecting confidential information while at the same time 
reaping the benefits of networked systems is an important goal. 
Traditionally military computer networks containing sensitive 
data have been protected by physically separating them from 
other systems. This complicates or prevents many important 
applications for which data has to pass from a classified to an 
unclassified system. Cross Domain Guards have been 
developed to allow a controlled exchange of information 
between systems of different classifications while filtering 
confidential information. The focus of this paper is on looking 
into the intended behavior of guards. While the actual 
implementation of guards is not the focus of the paper, we keep 
in mind that composing them from small building blocks which 
interact in a simple fashion is helpful for secure 
implementation. 

II. THE CONSIS PROJECT 

The CoNSIS (Coalition Networks for Secure Information 

Sharing) project is a joint effort of France, Germany, Norway 

and USA. The focus is on designing network architectures and 

protocols for future coalition operations. The work is 

distributed among five tasks. The author participates in Task 3 

which is responsible for security. 

The overall architecture [3] contains many elements of the 

Protected Core Networking (PCN) concept, but it is not 

identical. In CoNSIS several Colored Enclaves (CEs) are each 

connected to a Transport Network (TN) (Figure 1). The TN 

consists of several Transport Network Segments (TNSes). The 

CEs may contain unencrypted classified data. They are 

assumed to be physically protected from unauthorized access. 

Each one is run by a nation participating in the coalition. 
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Figure 1: A CoNSIS network 

The TNSes are either run by a nation or by the coalition. The 

TN they form is an unclassified network with focus on 

availability without confidentiality protection. This means that 

classified data transmitted from one CE to another has to be 

encrypted before it reaches the TN. This is achieved by 

placing IPsec devices between each CE and the TN which 

encrypt all traffic leaving a CE and decrypt the incoming 

traffic. Message confidentiality depends on correct installation 

of the IPsec devices and protecting the CEs from unauthorized 

physical access. 

III. MULTILEVEL SECURITY AND CROSS DOMAIN GUARDS 

Protecting classified information from unauthorized disclosure 

is among the most important goals in information processing 

in military applications. Strict separation of devices handling 

information of different degrees of confidentiality is often 

used to achieve this. For example, a user employs both a 

Secret and an Unclassified workstation not connected to each 

other for handling data of each classification. 



Such complete separation also prevents desirable flows of 

information between the systems. Full replication of hardware 

also means higher weight and greater power consumption, 

which can be problematic for mobile units. 

Multilevel Security deals with handling data of several 

classifications on the same device according to some set of 

rules. One well-known rule set is Bell-LaPadula (BLP) [2]. 

Each information object has a specific classification and each 

user has a clearance for access to data up to a specific 

maximum classification. BLP enforces that no data can be 

transmitted to a user with insufficient clearance. This is 

achieved by two rules. The first rule enforces that a user may 

not read data without having sufficient clearance. The second 

one prevents users from writing data to objects with a lower 

classification than their own clearance. This prevents data 

leaks by malicious software executed by a user with a high 

clearance. 

This strict rule set does not provide mechanisms for releasing 

or downgrading data which is no longer considered 

confidential or had its confidential parts removed. Often, some 

downgrading mechanism has to be implemented and exempt 

from the BLP rules for practical reasons. In [1] Rushby 

introduces the concept of a separation kernel. Such a 

separation kernel restricts the interaction of processes on a 

machine to specifically allowed communication. It allows a 

system to behave like a distributed system with specified 

connections but runs on a single piece of hardware. The 

motivation for this is using a separation kernel for providing 

reliable separation of processes and using specialized code to 

enforce policy by message filtering and verifying the correct 

behavior of each individually. 

There are several applications such as safety-critical real-time 

systems which are required to behave deterministically 

without being influenced by other processes. Rushby 

explicitly names filtering data which has to bypass an 

encryption device as an application. 

We design a downgrading mechanism based on a separation 

kernel. One partition contains the classified data (red), one 

contains the unclassified data (black) and a third contains the 

downgrading mechanism filtering the data (Cross Domain 

Guard). The separation kernel enforces that no data flows 

directly from red to black but has to go through the guard first. 

This means that only the separation kernel and the guard have 

to be trusted. Weaknesses in other code cannot be exploited to 

circumvent the guard. 

IV. STEGANOGRAPHY AND COVERT CHANNELS 

The main task of a Cross Domain Guard is to enforce a policy 

on the traffic flowing through it. It has to prevent the 

unwanted release of classified information. The obvious part 

of this task is to prevent accidental or malicious transmission 

of classified information which is transmitted as application 

data and properly marked or otherwise recognizable as 

classified. A guard identifies the data by searching it for “dirty 

words” such as “secret”, validation against an XML schema, 

which describes the format of messages intended to pass the 

guard, fails or some other mechanism inspecting the message 

payload flags the message as classified. 

Apart from this more subtle ways of data transmission have to 

be taken into account. Steganography is the art of hiding 

information inside other information in order to conceal the 

existence of the hidden message altogether. An overview of 

relevant definitions can be found in [5]. A well-known 

example is replacing the least significant bit of color 

information of pixels in an image file with the embedded 

message. A human observer is unlikely to notice the 

difference, but evading detection through statistical analysis 

will require more advanced techniques. Anderson explains 

several mechanisms in [6]. 

Covert channels are a related topic. They are used to transmit 

data from an object with a high classification (High) to one 

with a low classification (Low). In [6] a covert channel is 

defined as a mechanism not intended for communication 

which can be abused to communicate information from High 

to Low. In [7] the components of a covert channel, different 

examples and countermeasures are explained. A covert 

channel consists of a data variable and two synchronization 

variables, one sender-receiver (s-r) and one receiver-sender (r-

s) synchronization variable. The first two variables are 

properties of the system which can be set by High and read by 

Low. The last one can be set by Low and read by High (Figure 

2). High sets the data variable to a state representing the 

information to be transmitted. In the simplest case one of two 

states representing either 1 or 0 is set. High then uses the s-r 

variable to indicate that data can be received. Low reads the 

data variable and uses the r-s variable to inform High that it 

has received data. This process is repeated until all data has 

been transmitted. 
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Figure 2: Covert channel components (see [7]) 

When a common time reference is used for instead of the 

synchronization variables, the channel is called a timing 

channel otherwise it is called a storage channel. Properties of 

shared resources can be used as variables. A simple example is 

a hard disk shared by High and Low with access control 

mechanisms in place to prevent Low from reading files owned 

by High. High can allocate almost all remaining disk space 

and then allocate the rest to represent a 1 or deallocate some 

space to represent a 0. Low can now try to allocate space and 

determine whether it fails or not. They can then repeat this 

synchronized by the system clock. 

Both steganography and covert channels can be used by 

malicious software in a classified network to send classified 

data to an unclassified network through a guard. Guard design 



has to take limiting covert channels to acceptable values into 

account. Acceptable values depend on the environment a 

guard is used in. As noted in [7], the risk of espionage by 

sending classified satellite images via a low data rate covert 

channel without being detected is low due to the large file 

sizes, while an encryption key vulnerable to transmission by 

covert channel is a serious problem unless the covert channel 

bandwidth is almost nonexistent. 

V. A GUARD FOR MANAGEMENT DATA 

The CoNSIS architecture is designed to prevent unencrypted 

classified data from leaking to the TN by encrypting all data 

which leaves a CE and only accepting data originating from 

other CEs into a CE. Since the TN is a means to transport data 

and the users working on classified data operate inside the 

CEs, the fact that messages cannot be exchanged between a 

device in the TN and one in a CE does not pose a problem to 

regular applications. 

If we preclude all exchange of unencrypted data between TN 

and CE, we limit our options regarding network management. 

The management has to happen inside the TN. If instead we 

allow management data to be exchanged between TN and CE, 

users inside a CE can receive status information on the 

transport network and manage transport network segments if 

they are authorized to. This provides the users inside the CEs 

with the ability to adapt their transmission behavior to the 

available resources and manage the transport network 

according to their priorities. While devices connected to the 

TN could be physically located in reach of a CE user, this 

would mean manual control by the user and hardware 

replication. 

Passing messages between CE and TN means that these 

messages bypass the IPsec device and pass a filter to remove 

unwanted messages. 

Messages from CE to TN 

 must have legitimate management message syntax, 

 must not contain classified information and 

 must not allow transmission of classified information 

through covert channels. 

Messages from TN to CE 

 must not introduce malicious code. 

One has to balance the degree to which these goals are 

accomplished and the limitations enforced on legitimate 

traffic. This paper focuses on filtering messages from CE to 

TN using a guard. 

VI. STRUCTURE OF A GUARD 

The guard is designed as a sequence of filters running on a 

separation kernel. A message from CE to TN has to pass all 

filters before being released to the transport network. Each 

filter is installed on a partition of its own to minimize the size 

of each piece of critical code. We assume that XML is used 

for the management messages. 

The first filter validates the XML messages against a schema 

of legitimate messages. The second filter enforces additional 

constraints to limit the possible transmission of classified data 

through a sequence of messages of valid format. The last filter 

minimizes covert channels in packet headers. Figure 3 shows 

the guard components. We now discuss the properties of these 

components. 
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Figure 3: Guard components 

The intended behavior of the first filter is specified by a 

schema file which is determined by the syntax of the 

legitimate messages. The last filter needs to overwrite packet 

header fields usable for covert channels. Reference [4] 

contains an overview of TCP and IP header fields usable for 

covert channels. The last filter is also responsible for limiting 

timing channels by forwarding incoming messages at regular 

intervals. The next chapter discusses the second filter. 

VII. A FILTER FOR DELAYING MESSAGES 

The second filter forwards and in some cases delays messages 

in an effort to minimize potential misuse of messages of 

legitimate format containing classified information hidden 

with steganographic mechanisms. While enforcing this 

security requirement, legitimate traffic needs to be delayed as 

little as possible. A simple version of such a filter limits the 

message rate by queuing them and forwarding them at fixed 

intervals. When the legitimate message rate is set, the 

expected rate in regular operation and the acceptable covert 

channel capacity have to be taken into account. 

Depending on the application more complex requirements can 

be enforced by the filter such as setting individual message 

rates for each message type depending on their expected rate. 

If different message types have varying size, the acceptable 

message rate can be replaced with an acceptable payload bit 

rate. As an example, we can assume that there are two 

message types, message type A has no parameters and 

message type B has a 10 bit parameter. Sending a type A 

message transmits 1 bit, sending a type B message transmits 

11 bits. If we assume a malicious sender in the enclave, this is 

the maximum amount of classified information that can be 

encoded in the messages themselves. We then define a bit 

counter which is increased according to the acceptable bit rate 

and decreased according to the covert channel capacity 

(CCcap) when a message is sent. If the counter would be 

reduced to less than zero, the message is delayed (Figure 4). 

We set a maximum value for the counter to prevent a burst of 

malicious messages following a long period of regular 

operation. This setting has to take the expected bursts in 

legitimate traffic into account. The bit counter and the filter 

queue are checked at regular intervals. If the bit counter value 

is sufficient for the first message in the queue, the message is 

forwarded and the bit counter is adjusted. 
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Figure 4: Bit counter 

The advantage of applying a guard containing such a filter is 

the fact that we do not need to make assumptions about the 

validity of messages. We can just assume that each and every 

message may have been sent by an attacker using every bit to 

covertly send messages. Then we enforce a maximum data 

rate on this covert channel using the mechanisms above. No 

knowledge of steganographic mechanisms that may have been 

applied is necessary. This only works if the message rate in 

normal operation is low. If the message rate is high, we have 

the choice between two unacceptable scenarios. We either set 

a low acceptable covert channel data rate, which will 

dramatically slow down legitimate traffic or we set a high 

acceptable covert channel data rate and thereby give up on 

covert channel mitigation. 

Depending on data available to the guard additional filter rules 

can be enforced.  If, for example, there is a known set of 

routers management messages are sent to, we can keep a list 

of legitimate IP addresses and block messages to other 

destinations. If the relevant data is static and provided by a 

trusted mechanism, e.g. a protected configuration interface of 

the guard, it can be considered a configurable part of the first 

filter, the XML schema filter. 

VIII. ERROR HANDLING, AUDIT AND OTHER MECHANISMS 

We can install an anomaly detection mechanism to detect 

unusual sequences of messages. A sequence of messages 

switching a setting in a router back and forth or similar 

occurrences may be suspicious.  In such cases an alarm can be 

raised. In order to prevent additional guard complexity we 

suggest that such a device is not integrated in the guard itself, 

but the guard and the anomaly detection mechanism are 

installed in sequence. Figure 5 shows the guard and the 

anomaly detection mechanism. 
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Figure 5: Guard and additional mechanisms 

We assume that error messages and other logging data are sent 

from the components generating them to an audit component 

within the guard via unidirectional links (Figure 3). Only 

authorized administrators may access the component through a 

physically protected interface. This simplifies development by 

minimizing the information flow. 

Unidirectional flow of messages through the filter means that 

we cannot explicitly notify a sender, if an internal buffer is 

full. In order to prevent legitimate messages from being 

silently discarded, we can prepend an additional buffer to the 

filter. It is not part of the trusted guard device. This external 

buffer forwards messages to the filter at the same rate as the 

guard does. Unlike the buffer inside the guard it can notify 

senders when it is full. Figure 5 shows the position of the 

external buffer. 

IX. INTERACTION WITH CRYPTOGRAPHIC PROTECTION 

MECHANISMS 

In our example, network management, we assume that the 

management messages are not particularly confidential and 

may be sent in the clear. If we use a guard for filtering of 

encrypted messages, we assume that the guard has access to 

the decryption key. 

If messages are signed to prove their authenticity to the 

intended recipient in the transport network, we have to prevent 

subliminal channels - data hidden in the signature. This can be 

achieved through choice of signature algorithm. While for 

example DSA (Digital Signature Algorithm) allows the signer 

to choose a parameter influencing the signature, RSA 

signatures are deterministic which prevents a subliminal 

channel [6]. 

The text above discusses signatures used by applications to 

ensure integrity and authenticity. There are concepts in which 

a signature is applied to a message by a trusted device to label 

it as releasable. Then a guard releases the message if it has 

been signed by an authorized entity. These concepts are out of 

scope of this paper. The focus of this paper is on determining 

whether to release messages or not based on their content. A 

signature by the sender in the enclave is not considered 

sufficient for message release to the transport network in our 

scenario. 

X. A MANAGEMENT PROXY 

Minimizing the amount of legitimate messages passing the 

guard increases the difficulty of covertly passing classified 

information through them. If there are typical patterns in the 

messages that should pass, it can be helpful to install a proxy 

device in the transport network which expands messages to 

sets of messages. If, for example, a message has to be sent to 

all routers controlled by the administrator in the enclave, a 

single message can be sent to the proxy which instructs it to 

generate all these messages instead of generating all messages 

in the enclave. 

Depending on the application different “strategy” messages to 

the proxy and its reaction when receiving them can be defined 

before deploying the system. The reaction may be more 

complex than just forwarding the message to multiple 

recipients. The goal is to identify the information that needs to 

be transmitted to the transport network and send the least 

amount of bits necessary to represent this information. This 

way we can set the guard to a low allowed bit rate while 

maintaining functionality. 

In a scenario without flow of information from the TN to the 

CE installing such a proxy basically allows us to compress the 

messages from the CE to the TN. If, without a proxy, 

messages are also sent from the TN to the CE, it can be 

possible to reduce the number of messages passing through the 



guard in both directions. This is the case when the proxy can 

take care of message exchanges without further information 

from within the CE. If, for example, several devices report 

their status and receive an acknowledgement (ACK) in return 

(Figure 6), we can use a proxy. Instead of each status message 

passing the guard to the CE and each acknowledgement 

passing it to the TN, we can do each exchange between device 

and proxy within the TN and send one aggregated status 

message to the CE (Figure 7). In both figures “Guard” 

represents the whole set of mechanisms shown in Figure 5. 
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Figure 6: Information flow through a guard 

Guard

Status

Status

StatusACK

Management 

workstation (CE)

Devices (TN)

Proxy (TN)

Status

 
Figure 7: Information flow through a guard with proxy 

For some applications such proxies may exist for efficiency 

reasons anyway. In that case we just have to choose where 

they should be placed to minimize cross domain traffic. For 

other applications proxies may not be considered 

advantageous in general because of increased complexity, 

delay or other reasons. Here we can analyze whether the 

expected decrease in cross domain traffic is worth introducing 

a proxy or not. 

XI. RELATED WORK 

Several products for cross domain filtering exist. One 

application is controlling the settings of an integrated radio 

and crypto device which encrypts all user data before 

transmitting it. If a computer containing classified data is 

connected to the device, commands sent from the computer to 

the radio component, e.g. setting the frequency, have to bypass 

the encryption component. Filter products are available, which 

make sure that only specific commands may bypass it. 

There are also similar guard products for filtering IP network 

traffic crossing a boundary between two security domains. 

They use filters specific to protocol and application. Usually 

they offer customers to define filters according to their needs 

without mentioning details in promotional material. 

We are not aware of a common format to specify the desired 

behavior of a guard beyond definition of the message format 

for example by an XML schema language. We intend to look 

into ways to represent more complex requirements such as 

message rate dependent on message properties. 

XII. SUMMARY AND FUTURE WORK 

This paper examined how messages can be passed from a 

classified to an unclassified network in a CoNSIS network 

with minimal risk of leaking classified data. The introduction 

was followed by an overview of the CoNSIS architecture and 

general information on Multilevel Security. Then we 

described a guard for filtering data sent from a classified to an 

unclassified network for low message rate scenarios. It 

consists of a series of filters running on a separation kernel. 

Then we discussed effects of use of cryptographic protection 

of messages. This was followed by the concept of a proxy 

device in the unclassified network to limit the amount of 

messages having to pass the guard. Finally we provided some 

pointers to related work. 

Future work includes defining the behavior of a guard and a 

proxy with respect to a specific application such as a network 

management protocol. As mentioned in the related work 

section, choosing a clear representation of complex 

requirements regarding guard behavior is also a part of future 

work. 
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