
Use of Cross Domain Guards for CoNSIS network

management

Philipp Steinmetz

Cyber Defense

Fraunhofer FKIE

Wachtberg, Germany

philipp.steinmetz@fkie.fraunhofer.de

Abstract— This paper discusses filtering of messages sent from a

classified to an unclassified network using a cross domain guard.

We discuss how we can use such a guard within the network

architecture designed in the CoNSIS (Coalition Networks for

Secure Information Sharing) project for use in future coalition

operations. A guard design is presented which enforces that only

XML messages conforming to a specific format may pass the

guard. It also limits the message rate based on message size and

the resulting possible covert channel. We can use this guard

design for low data rate applications which have to communicate

across networks of different classification. We also discuss a

proxy device located in the unclassified network to reduce the

required amount of communication between classified and

unclassified network.

Keywords-Information Security; Computer networks

I. INTRODUCTION

Protecting confidential information while at the same time
reaping the benefits of networked systems is an important goal.
Traditionally military computer networks containing sensitive
data have been protected by physically separating them from
other systems. This complicates or prevents many important
applications for which data has to pass from a classified to an
unclassified system. Cross Domain Guards have been
developed to allow a controlled exchange of information
between systems of different classifications while filtering
confidential information. The focus of this paper is on looking
into the intended behavior of guards. While the actual
implementation of guards is not the focus of the paper, we keep
in mind that composing them from small building blocks which
interact in a simple fashion is helpful for secure
implementation.

II. THE CONSIS PROJECT

The CoNSIS (Coalition Networks for Secure Information

Sharing) project is a joint effort of France, Germany, Norway

and USA. The focus is on designing network architectures and

protocols for future coalition operations. The work is

distributed among five tasks. The author participates in Task 3

which is responsible for security.

The overall architecture [3] contains many elements of the

Protected Core Networking (PCN) concept, but it is not

identical. In CoNSIS several Colored Enclaves (CEs) are each

connected to a Transport Network (TN) (Figure 1). The TN

consists of several Transport Network Segments (TNSes). The

CEs may contain unencrypted classified data. They are

assumed to be physically protected from unauthorized access.

Each one is run by a nation participating in the coalition.

Colored Enclave

Nation A

(classified)

Colored Enclave

Nation B

(classified)

Colored Enclave

Nation C

(classified)

Segment

Nation A
Segment

Nation B

Segment

Nation C

IPsec

IPsec

IPsec

Transport Network

(unclassified)

Figure 1: A CoNSIS network

The TNSes are either run by a nation or by the coalition. The

TN they form is an unclassified network with focus on

availability without confidentiality protection. This means that

classified data transmitted from one CE to another has to be

encrypted before it reaches the TN. This is achieved by

placing IPsec devices between each CE and the TN which

encrypt all traffic leaving a CE and decrypt the incoming

traffic. Message confidentiality depends on correct installation

of the IPsec devices and protecting the CEs from unauthorized

physical access.

III. MULTILEVEL SECURITY AND CROSS DOMAIN GUARDS

Protecting classified information from unauthorized disclosure

is among the most important goals in information processing

in military applications. Strict separation of devices handling

information of different degrees of confidentiality is often

used to achieve this. For example, a user employs both a

Secret and an Unclassified workstation not connected to each

other for handling data of each classification.

Such complete separation also prevents desirable flows of

information between the systems. Full replication of hardware

also means higher weight and greater power consumption,

which can be problematic for mobile units.

Multilevel Security deals with handling data of several

classifications on the same device according to some set of

rules. One well-known rule set is Bell-LaPadula (BLP) [2].

Each information object has a specific classification and each

user has a clearance for access to data up to a specific

maximum classification. BLP enforces that no data can be

transmitted to a user with insufficient clearance. This is

achieved by two rules. The first rule enforces that a user may

not read data without having sufficient clearance. The second

one prevents users from writing data to objects with a lower

classification than their own clearance. This prevents data

leaks by malicious software executed by a user with a high

clearance.

This strict rule set does not provide mechanisms for releasing

or downgrading data which is no longer considered

confidential or had its confidential parts removed. Often, some

downgrading mechanism has to be implemented and exempt

from the BLP rules for practical reasons. In [1] Rushby

introduces the concept of a separation kernel. Such a

separation kernel restricts the interaction of processes on a

machine to specifically allowed communication. It allows a

system to behave like a distributed system with specified

connections but runs on a single piece of hardware. The

motivation for this is using a separation kernel for providing

reliable separation of processes and using specialized code to

enforce policy by message filtering and verifying the correct

behavior of each individually.

There are several applications such as safety-critical real-time

systems which are required to behave deterministically

without being influenced by other processes. Rushby

explicitly names filtering data which has to bypass an

encryption device as an application.

We design a downgrading mechanism based on a separation

kernel. One partition contains the classified data (red), one

contains the unclassified data (black) and a third contains the

downgrading mechanism filtering the data (Cross Domain

Guard). The separation kernel enforces that no data flows

directly from red to black but has to go through the guard first.

This means that only the separation kernel and the guard have

to be trusted. Weaknesses in other code cannot be exploited to

circumvent the guard.

IV. STEGANOGRAPHY AND COVERT CHANNELS

The main task of a Cross Domain Guard is to enforce a policy

on the traffic flowing through it. It has to prevent the

unwanted release of classified information. The obvious part

of this task is to prevent accidental or malicious transmission

of classified information which is transmitted as application

data and properly marked or otherwise recognizable as

classified. A guard identifies the data by searching it for “dirty

words” such as “secret”, validation against an XML schema,

which describes the format of messages intended to pass the

guard, fails or some other mechanism inspecting the message

payload flags the message as classified.

Apart from this more subtle ways of data transmission have to

be taken into account. Steganography is the art of hiding

information inside other information in order to conceal the

existence of the hidden message altogether. An overview of

relevant definitions can be found in [5]. A well-known

example is replacing the least significant bit of color

information of pixels in an image file with the embedded

message. A human observer is unlikely to notice the

difference, but evading detection through statistical analysis

will require more advanced techniques. Anderson explains

several mechanisms in [6].

Covert channels are a related topic. They are used to transmit

data from an object with a high classification (High) to one

with a low classification (Low). In [6] a covert channel is

defined as a mechanism not intended for communication

which can be abused to communicate information from High

to Low. In [7] the components of a covert channel, different

examples and countermeasures are explained. A covert

channel consists of a data variable and two synchronization

variables, one sender-receiver (s-r) and one receiver-sender (r-

s) synchronization variable. The first two variables are

properties of the system which can be set by High and read by

Low. The last one can be set by Low and read by High (Figure

2). High sets the data variable to a state representing the

information to be transmitted. In the simplest case one of two

states representing either 1 or 0 is set. High then uses the s-r

variable to indicate that data can be received. Low reads the

data variable and uses the r-s variable to inform High that it

has received data. This process is repeated until all data has

been transmitted.

Sending process

(high)

Receiving process

(low)

Data variable
Synchronisation variable

Sender/Receiver

Synchronisation variable

Receiver/Sender

Figure 2: Covert channel components (see [7])

When a common time reference is used for instead of the

synchronization variables, the channel is called a timing

channel otherwise it is called a storage channel. Properties of

shared resources can be used as variables. A simple example is

a hard disk shared by High and Low with access control

mechanisms in place to prevent Low from reading files owned

by High. High can allocate almost all remaining disk space

and then allocate the rest to represent a 1 or deallocate some

space to represent a 0. Low can now try to allocate space and

determine whether it fails or not. They can then repeat this

synchronized by the system clock.

Both steganography and covert channels can be used by

malicious software in a classified network to send classified

data to an unclassified network through a guard. Guard design

has to take limiting covert channels to acceptable values into

account. Acceptable values depend on the environment a

guard is used in. As noted in [7], the risk of espionage by

sending classified satellite images via a low data rate covert

channel without being detected is low due to the large file

sizes, while an encryption key vulnerable to transmission by

covert channel is a serious problem unless the covert channel

bandwidth is almost nonexistent.

V. A GUARD FOR MANAGEMENT DATA

The CoNSIS architecture is designed to prevent unencrypted

classified data from leaking to the TN by encrypting all data

which leaves a CE and only accepting data originating from

other CEs into a CE. Since the TN is a means to transport data

and the users working on classified data operate inside the

CEs, the fact that messages cannot be exchanged between a

device in the TN and one in a CE does not pose a problem to

regular applications.

If we preclude all exchange of unencrypted data between TN

and CE, we limit our options regarding network management.

The management has to happen inside the TN. If instead we

allow management data to be exchanged between TN and CE,

users inside a CE can receive status information on the

transport network and manage transport network segments if

they are authorized to. This provides the users inside the CEs

with the ability to adapt their transmission behavior to the

available resources and manage the transport network

according to their priorities. While devices connected to the

TN could be physically located in reach of a CE user, this

would mean manual control by the user and hardware

replication.

Passing messages between CE and TN means that these

messages bypass the IPsec device and pass a filter to remove

unwanted messages.

Messages from CE to TN

 must have legitimate management message syntax,

 must not contain classified information and

 must not allow transmission of classified information

through covert channels.

Messages from TN to CE

 must not introduce malicious code.

One has to balance the degree to which these goals are

accomplished and the limitations enforced on legitimate

traffic. This paper focuses on filtering messages from CE to

TN using a guard.

VI. STRUCTURE OF A GUARD

The guard is designed as a sequence of filters running on a

separation kernel. A message from CE to TN has to pass all

filters before being released to the transport network. Each

filter is installed on a partition of its own to minimize the size

of each piece of critical code. We assume that XML is used

for the management messages.

The first filter validates the XML messages against a schema

of legitimate messages. The second filter enforces additional

constraints to limit the possible transmission of classified data

through a sequence of messages of valid format. The last filter

minimizes covert channels in packet headers. Figure 3 shows

the guard components. We now discuss the properties of these

components.

Filter: Schema Filter: Delay

Audit log

Filter: Header

Bit counterSchema

Queue
MessageMessage

Figure 3: Guard components

The intended behavior of the first filter is specified by a

schema file which is determined by the syntax of the

legitimate messages. The last filter needs to overwrite packet

header fields usable for covert channels. Reference [4]

contains an overview of TCP and IP header fields usable for

covert channels. The last filter is also responsible for limiting

timing channels by forwarding incoming messages at regular

intervals. The next chapter discusses the second filter.

VII. A FILTER FOR DELAYING MESSAGES

The second filter forwards and in some cases delays messages

in an effort to minimize potential misuse of messages of

legitimate format containing classified information hidden

with steganographic mechanisms. While enforcing this

security requirement, legitimate traffic needs to be delayed as

little as possible. A simple version of such a filter limits the

message rate by queuing them and forwarding them at fixed

intervals. When the legitimate message rate is set, the

expected rate in regular operation and the acceptable covert

channel capacity have to be taken into account.

Depending on the application more complex requirements can

be enforced by the filter such as setting individual message

rates for each message type depending on their expected rate.

If different message types have varying size, the acceptable

message rate can be replaced with an acceptable payload bit

rate. As an example, we can assume that there are two

message types, message type A has no parameters and

message type B has a 10 bit parameter. Sending a type A

message transmits 1 bit, sending a type B message transmits

11 bits. If we assume a malicious sender in the enclave, this is

the maximum amount of classified information that can be

encoded in the messages themselves. We then define a bit

counter which is increased according to the acceptable bit rate

and decreased according to the covert channel capacity

(CCcap) when a message is sent. If the counter would be

reduced to less than zero, the message is delayed (Figure 4).

We set a maximum value for the counter to prevent a burst of

malicious messages following a long period of regular

operation. This setting has to take the expected bursts in

legitimate traffic into account. The bit counter and the filter

queue are checked at regular intervals. If the bit counter value

is sufficient for the first message in the queue, the message is

forwarded and the bit counter is adjusted.

Queue

Counter
Acceptable data rate

parameter

Filter

Add x Bit per interval

Message

Check counter value

Message

Subtract CCcap(message) Bit

Figure 4: Bit counter

The advantage of applying a guard containing such a filter is

the fact that we do not need to make assumptions about the

validity of messages. We can just assume that each and every

message may have been sent by an attacker using every bit to

covertly send messages. Then we enforce a maximum data

rate on this covert channel using the mechanisms above. No

knowledge of steganographic mechanisms that may have been

applied is necessary. This only works if the message rate in

normal operation is low. If the message rate is high, we have

the choice between two unacceptable scenarios. We either set

a low acceptable covert channel data rate, which will

dramatically slow down legitimate traffic or we set a high

acceptable covert channel data rate and thereby give up on

covert channel mitigation.

Depending on data available to the guard additional filter rules

can be enforced. If, for example, there is a known set of

routers management messages are sent to, we can keep a list

of legitimate IP addresses and block messages to other

destinations. If the relevant data is static and provided by a

trusted mechanism, e.g. a protected configuration interface of

the guard, it can be considered a configurable part of the first

filter, the XML schema filter.

VIII. ERROR HANDLING, AUDIT AND OTHER MECHANISMS

We can install an anomaly detection mechanism to detect

unusual sequences of messages. A sequence of messages

switching a setting in a router back and forth or similar

occurrences may be suspicious. In such cases an alarm can be

raised. In order to prevent additional guard complexity we

suggest that such a device is not integrated in the guard itself,

but the guard and the anomaly detection mechanism are

installed in sequence. Figure 5 shows the guard and the

anomaly detection mechanism.

External

buffer

Anomaly

detection

Message Message

Guard

Buffer

status
Figure 5: Guard and additional mechanisms

We assume that error messages and other logging data are sent

from the components generating them to an audit component

within the guard via unidirectional links (Figure 3). Only

authorized administrators may access the component through a

physically protected interface. This simplifies development by

minimizing the information flow.

Unidirectional flow of messages through the filter means that

we cannot explicitly notify a sender, if an internal buffer is

full. In order to prevent legitimate messages from being

silently discarded, we can prepend an additional buffer to the

filter. It is not part of the trusted guard device. This external

buffer forwards messages to the filter at the same rate as the

guard does. Unlike the buffer inside the guard it can notify

senders when it is full. Figure 5 shows the position of the

external buffer.

IX. INTERACTION WITH CRYPTOGRAPHIC PROTECTION

MECHANISMS

In our example, network management, we assume that the

management messages are not particularly confidential and

may be sent in the clear. If we use a guard for filtering of

encrypted messages, we assume that the guard has access to

the decryption key.

If messages are signed to prove their authenticity to the

intended recipient in the transport network, we have to prevent

subliminal channels - data hidden in the signature. This can be

achieved through choice of signature algorithm. While for

example DSA (Digital Signature Algorithm) allows the signer

to choose a parameter influencing the signature, RSA

signatures are deterministic which prevents a subliminal

channel [6].

The text above discusses signatures used by applications to

ensure integrity and authenticity. There are concepts in which

a signature is applied to a message by a trusted device to label

it as releasable. Then a guard releases the message if it has

been signed by an authorized entity. These concepts are out of

scope of this paper. The focus of this paper is on determining

whether to release messages or not based on their content. A

signature by the sender in the enclave is not considered

sufficient for message release to the transport network in our

scenario.

X. A MANAGEMENT PROXY

Minimizing the amount of legitimate messages passing the

guard increases the difficulty of covertly passing classified

information through them. If there are typical patterns in the

messages that should pass, it can be helpful to install a proxy

device in the transport network which expands messages to

sets of messages. If, for example, a message has to be sent to

all routers controlled by the administrator in the enclave, a

single message can be sent to the proxy which instructs it to

generate all these messages instead of generating all messages

in the enclave.

Depending on the application different “strategy” messages to

the proxy and its reaction when receiving them can be defined

before deploying the system. The reaction may be more

complex than just forwarding the message to multiple

recipients. The goal is to identify the information that needs to

be transmitted to the transport network and send the least

amount of bits necessary to represent this information. This

way we can set the guard to a low allowed bit rate while

maintaining functionality.

In a scenario without flow of information from the TN to the

CE installing such a proxy basically allows us to compress the

messages from the CE to the TN. If, without a proxy,

messages are also sent from the TN to the CE, it can be

possible to reduce the number of messages passing through the

guard in both directions. This is the case when the proxy can

take care of message exchanges without further information

from within the CE. If, for example, several devices report

their status and receive an acknowledgement (ACK) in return

(Figure 6), we can use a proxy. Instead of each status message

passing the guard to the CE and each acknowledgement

passing it to the TN, we can do each exchange between device

and proxy within the TN and send one aggregated status

message to the CE (Figure 7). In both figures “Guard”

represents the whole set of mechanisms shown in Figure 5.

Guard

Status

Status

StatusACK

ACK

ACK

Management

workstation (CE)

Devices (TN)
Figure 6: Information flow through a guard

Guard

Status

Status

StatusACK

Management

workstation (CE)

Devices (TN)

Proxy (TN)

Status

Figure 7: Information flow through a guard with proxy

For some applications such proxies may exist for efficiency

reasons anyway. In that case we just have to choose where

they should be placed to minimize cross domain traffic. For

other applications proxies may not be considered

advantageous in general because of increased complexity,

delay or other reasons. Here we can analyze whether the

expected decrease in cross domain traffic is worth introducing

a proxy or not.

XI. RELATED WORK

Several products for cross domain filtering exist. One

application is controlling the settings of an integrated radio

and crypto device which encrypts all user data before

transmitting it. If a computer containing classified data is

connected to the device, commands sent from the computer to

the radio component, e.g. setting the frequency, have to bypass

the encryption component. Filter products are available, which

make sure that only specific commands may bypass it.

There are also similar guard products for filtering IP network

traffic crossing a boundary between two security domains.

They use filters specific to protocol and application. Usually

they offer customers to define filters according to their needs

without mentioning details in promotional material.

We are not aware of a common format to specify the desired

behavior of a guard beyond definition of the message format

for example by an XML schema language. We intend to look

into ways to represent more complex requirements such as

message rate dependent on message properties.

XII. SUMMARY AND FUTURE WORK

This paper examined how messages can be passed from a

classified to an unclassified network in a CoNSIS network

with minimal risk of leaking classified data. The introduction

was followed by an overview of the CoNSIS architecture and

general information on Multilevel Security. Then we

described a guard for filtering data sent from a classified to an

unclassified network for low message rate scenarios. It

consists of a series of filters running on a separation kernel.

Then we discussed effects of use of cryptographic protection

of messages. This was followed by the concept of a proxy

device in the unclassified network to limit the amount of

messages having to pass the guard. Finally we provided some

pointers to related work.

Future work includes defining the behavior of a guard and a

proxy with respect to a specific application such as a network

management protocol. As mentioned in the related work

section, choosing a clear representation of complex

requirements regarding guard behavior is also a part of future

work.

REFERENCES

[1] J. Rushby, "The Design and Verification of Secure Systems," in Eighth
ACM Symposium on Operating System Principles (SOSP), Asilomar,
CA, 1981.

[2] L. J. La Padula and D. E. Bell, "Secure Computer Systems: A
Mathematical Model," The MITRE Corporation, Bedford, MA, USA,
1973.

[3] CoNSIS, "System and Experimentation Architectures v1.0," 2011.

[4] S. J. Murdoch and S. Lewis, "Embedding Covert Channels into TCP/IP,"
in Information Hiding: 7th International Workshop, volume 3727 of
LNCS, Barcelona, Spain, Springer, 2005.

[5] B. Pfitzmann, "Information Hiding Terminology - Results of an
Informal Plenary Meeting and Additional Proposals," in Proceedings of
the First International Workshop on Information Hiding, Springer-
Verlag, 1996.

[6] R. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems - 2nd ed., Wiley, 2008.

[7] V. Gligor, "A Guide to Understanding Covert Channel Analysis of
Trusted Systems," National Security Agency, Ft. George G. Meade,
MD, USA, 1993.

