

FFI-rapport 2012/00117

SOA Pilot 2011 – demonstrating secure exchange of
information between security domains

Raymond Haakseth

Norwegian Defence Research Establishment (FFI)

2 march 2012

 2 FFI-rapport 2012/00117

FFI-rapport 2012/00117

1176

P: ISBN 978-82-464-2109-4

E: ISBN 978-82-464-2110-0

Keywords

Informasjonssikkerhet

Informasjonsmerking

Informasjonsutveksling mellom sikkerhetsdomener

Guard

Tjenesteorientert arkitektur

Approved by

Rolf Rasmussen Project Manager

Anders Eggen Director

FFI-rapport 2012/00117 3

English summary

The work described in this document is performed within the context of a SOA Pilot activity

undertaken by FFI during the spring of 2011. The overall goal of the SOA Pilot was to show the

benefits of Service Oriented Architectures (SOA) and the value added by exposing the

information available in different systems through well-defined services, including information

from legacy systems. This activity also included the secure exchange of information between

security domains using a prototype guard.

Security domains are important constructs used to protect information from unauthorised access

and prevent information leakage. The military security domain concept is based on the Bell-

LaPadula model and this model can in short be described as allowing information to flow from a

low to a high security domain, but not the other way in order to prevent information leakage. A

high security domain can still contain information of lower classification. Even though this

information can be valuable for users in lower domains and these users are cleared to view it, it

cannot be accessed. At the same time the military organisations and thus also information systems

are moving towards the concept of Networked Enabled Capability (NEC). In NEC the perhaps

most important tenet is the need to share information or the right information to the right user at

the right time. In this document a proposed solution for securely exchanging information between

security domains is presented. The theory behind the solution is presented as well as a prototype

implementation of the solution.

The proposed solution relies heavily on the concept of Object Level Protection (OLP). In short

OLP consist of three building blocks; metadata, data and protection mechanisms. Information

assurance metadata is used to describe the needs for protection of data, and protection

mechanisms use the metadata as basis for their handling of the data. For instance confidentiality

metadata attached to data can be used as a basis for a release decision made by a guard placed

between a high and a low security domain. In the solution presented in this document, proposed

NATO standards for confidentiality metadata (also called a confidentiality label) and the binding

of metadata to data (metadata binding) are used. These proposed standards have been developed

within the NATO RTO IST-068/RTG-031 research task group and FFI has been the editor and

provided substantial contributions to them. The solution presented in this document also features

a prototype guard capable of securely exchanging SOAP messages between domains developed

by FFI.

 4 FFI-rapport 2012/00117

Sammendrag

Arbeidet beskrevet i dette dokumentet er utført i sammenheng med SOA pilot aktiviteten som FFI

var en svært viktig del av våren 2011. Hovedformålet med SOA piloten var å demonstrere

nytteverdien av tjenesteorientert arkitektur (SOA) og den tilgjengeliggjøringen av informasjon

gjennom kjente grensesnitt som er mulig med denne teknologien. Eksisterende kommando og

kontrollsystemer ble derfor tjenesteorientert og informasjonen som disse innholder ble gjort

tilgjengelig for potensielle konsumenter. En løsning for utveksling av informasjon ble også

demonstrert ved bruk av SOA-tjenester mellom forskjellige sikkerhetsdomener.

Sikkerhetsdomener brukes i dag for å beskytte konfidensialiteten til informasjon.

Sikkerhetsdomener og de tilhørende mekanismene skal hindre uautorisert tilgang til, og dermed

også lekkasje av, informasjon. Kort beskrevet gjøres dette ved at informasjon kan flyttes fra et

lavere gradert til et høyere gradert domene, men ikke andre veien. Samtidig beveger den militære

organisasjonen og dermed også informasjonssystemene seg mot et Nettverksbasert Forsvar (NbF)

hvor tilgang til rett informasjon til rett tid for rett bruker er svært viktig. Siden det kan eksistere

informasjon i et høyere gradert domene som er av lavere gradering, og som kan være av nytte for

brukere i domener med lavere gradering, er det behov for en løsning for å flytte informasjon

sikkert mellom domener. Denne løsningen må ta hensyn til både behovet for beskyttelse av

informasjon og behovet for å dele informasjon. Dette dokumentet skisserer en foreslått løsning

for sikker utveksling av informasjon mellom sikkerhetsdomener. I tillegg skisseres teorien og

grunnlaget for den foreslåtte løsningen.

Den foreslåtte løsningen baserer seg på bruk av prinsippene rundt objektnivå sikkerhet (Object

Level Protection (OLP)). Kort kan dette forklares ved at hvert objekt blir behandlet av

beskyttelsesmekanismer etter dets individuelle behov for beskyttelse, dette behovet er beskrevet

ved hjelp av metadata. Beskyttelsesmekanismer gjør sine vurderinger basert på de metadata som

er knyttet til objektet og ikke infrastrukturen slik som i dag. En slik beskyttelsesmekanisme kan

være en guard som inspiserer all informasjon som skal flyttes fra høyt til lavt domene. I løsningen

som er utviklet og skissert i dette dokumentet brukes en foreslått NATO standard for

konfidensialitets metadata (også kalt konfidensialitetsmerke) og en annen foreslått NATO

standard for å binde metadata til informasjonsobjekter. FFI har vært editor for disse, som begge er

tatt fram av forskningsgruppen NATO RTO IST-068/RTG-031. En prototype guard-løsning som

kan håndtere SOAP meldinger er også utviklet ved FFI.

FFI-rapport 2012/00117 5

Contents

1 Introduction 7

2 Object Level Protection 9

2.1 Binding metadata to data 10

3 Architecture for Cross-Domain Information Exchange 12

4 Proposed NATO Standards for Information Assurance
Metadata and Metadata Binding 15

4.1 XML Confidentiality Label 15

4.2 XML Metadata Binding 18

5 SOA Pilot 2011 19

5.1 Scenario Overview 20

5.2 Software description 21

5.2.1 Prototype XML/SOAP Guard 22

5.2.2 NFFI Request/Response Service and Client 26

5.3 Applying XML Confidentiality Label and Binding to SOAP Messages 28

5.4 SOA Pilot Execution 32

6 Future Work 35

7 Summary 36

References 36

 Appendix A Labelled and signed SOAP Message 38

 6 FFI-rapport 2012/00117

FFI-rapport 2012/00117 7

1 Introduction

NATO and NATO nations have embraced the concept of Networked Enabled Capability (NEC)

and this concept forms the basis for future development of both the organisations and information

systems. One of the key enablers identified for the NATO NEC (NNEC) is Service Oriented

Architecture (SOA) and the implementation of this. SOA and its use in military information

systems is also the main focus of the FFI project 1176 “Tjenesteorientering og semantisk

interoperabilitet i INI” and during the spring of 2011 this project was one of the partners in a pilot

activity aiming to service orient existing military information systems. The pilot activity was

known as the SOA Pilot.

The overall goal of the SOA Pilot was to show the value added by exposing the information

available in different systems, including legacy systems, through well-defined services. Making

information available in this way supports the development towards the need-to-share paradigm

introduced by NNEC where information is available to whoever needs it, when it is needed. The

move from the traditional and strict need-to-know mentality known from today’s military systems

to the need-to-share paradigm involves sharing information between users in different national

security domains and also between allied or partner nations, civilian authorities and non-

governmental organisations. At the same time as there is a drive to share more information, it is

still important to protect information from unauthorised disclosure.

Demonstrating a solution for securely exchanging information between different security domains

was thus an important part of the SOA Pilot. This document describes a proposed solution based

on the use of the principle of Object Level Protection (OLP). A demonstrator implementation of

the proposed solution was used during the SOA Pilot. The technical solutions and how these fits

into the overall scenario are presented by this document, as well as the supporting concepts. It is

important to note that none of the software, designs and architectures presented in this document

has been formally evaluated or certified. They are all experimental and should be treated as such.

Traditionally security domains are created in order to protect the confidentiality of information,

i.e. prevent unauthorised disclosure of information. In a military setting this more or less

corresponds to the Bell-LaPadula Model [1;2]. According to the Bell-LaPadula a user (subject) is

allowed to read information at her own or lower classification levels (read down), and she is

allowed to write to a classification level equal or higher than her own (write up). A strict

interpretation of Bell-LaPadula thus prevents information flows from a high to a low domain.

However, in real life a strict implementation of this model is not feasible and there is a need for

information to flow from high to low domains. It is not usual to have single level domains and as

a result domains can contain information up to and including its own classification level, e.g. a

secret domain can contain information of classifications unclassified, restricted, confidential and

secret. This combined with the fact that users on lower domains may have a need to access the

information of lower classification clearly indicates a requirement for information exchange

between security domains.

 8 FFI-rapport 2012/00117

In order to connect and exchange information between security domains, a cross domain sharing

solution is needed. Figure 1.1 outlines the main challenges for such a solution. First of all it

needs to protect the high domain and the information within from unauthorised information

leakage. That is, only information that is allowed according to a given policy can be transported

from the high to the low domain by the sharing solution. Second, the sharing solution must also

ensure that no malicious code such as viruses, worms and other forms of cyber-attacks are passed

to the high domain. The latter issue, although important, has not been the focus of the work

presented in this document and will thus not be treated any further.

Figure 1.1 The sharing problem

Existing solutions for exchanging information between security domains are often limited either

in functionality or bandwidth or both. The most common cross domain solution used today is air

gaping. This involves a manual review of the information at the high side, storing the information

on some sort of storage medium (e.g. CD or USB memory stick), and then moving this to a

computer on the other domain. Moving information from the low to the high domain is done

similarly. This process is very time consuming and the bandwidth thus becomes low, and it can

also be susceptible to human errors. This cross domain sharing solution is also often denoted the

swivel chair solution. A one-way data diode solution can be used to automate and speed up the

flow of information from the low domain to the high, but this does not resolve the problem of

securely and efficiently moving information from a high domain to a low. In addition, semi-

automatic solution with a release function might be used and also fixed format guard solutions.

These are however often very limited in functionality, and are not usable for the general purpose

information exchange. In addition, it is very expensive to create and change these solutions due to

the time consuming and costly process of certification and re-certification. What is needed is a

general purpose guard solution that can provide automatic and secure information flow both ways

between security domains.

The work presented in this document is heavily based on the results from the now terminated

NATO RTO Task Group on XML in Cross Domain Solutions (NATO RTO IST-068/RTG-031).

The overall goal of the task group was to improve information sharing between security domains

FFI-rapport 2012/00117 9

by facilitating a flexible infrastructure and utilising the power of the eXtensible Markup

Language (XML). The group consisted of members from nine NATO nations (Norway, USA,

United Kingdom, the Netherlands, Canada, Slovenia, Germany, Poland and France), the NATO

C3 Agency and Finland as a partner nation.

The rest of this document is structured as follows; sections 2 through 4 presents the theory,

concepts and standards that our proposed solution is based on. Section 2 describes the basic

principle of object level protection that our proposed solution relies on. Section 3 explains the

general architecture proposed for secure cross domain information exchange. This description is

followed by a description of the two proposed NATO standards for XML Confidentiality Label

and XML Metadata binding in section 0. Next, section 5 focuses on the contributions to the SOA

Pilot and the prototype solution developed for secure exchange of information between security

domains. This involves a short description of the scenario, software developed and execution. In

section 0 the future work is outlined and finally section 7 summarises this document.

2 Object Level Protection

The concept of Object Level Protection (OLP) is a cornerstone in our proposed solution for

exchanging information between security domains. It is also identified as an important part of the

puzzle when realising and implementing the future NNEC [3].

Figure 2.1 The concept of object level protection

Informally OLP can be described in light of the three main components and the relationship

between them, as outlined in Figure 2.1. The main components are Data, Information Assurance

(IA) Metadata and Protection mechanisms. By data it is here understood a finite piece of

information such as documents, files, messages and such. Informally metadata can be defined as

data about data and is used to describe some property of the data. Accordingly information

assurance metadata is used to describe the need for protection, for instance confidentiality or

integrity. Traditionally military systems have focused on the need for confidentiality protection

and have used the three metadata attributes policy, classification and categories to describe this.

These three together is also often known as a security label. There must be a relationship in form

of an association between the data and information assurance metadata. This association simply

says that this metadata belongs to this data (see section 2.1 for more details). The last component,

protection mechanism, represents a generic mechanism that protects information.

 10 FFI-rapport 2012/00117

Such a mechanism can for instance be an access control system or a guard. Using the OLP

concept a protection mechanism performs its tasks by using the information assurance metadata

associated with the data as an input and basis for decisions.

Use of the OLP concept provides some key benefits over the traditional approach. It first of all

provides a larger degree of flexibility as metadata associated with the data can inform protection

mechanisms how to handle the data. In the traditional approach the actions taken by protection

mechanisms are pre-configured from policy, which are often dictated by the infrastructure where

the data is stored or transported. This often does not reflect the actual need for protection. Also

the use of OLP provides the opportunity for a finer level of protection granularity. Individual data

objects may be handled individually according to the associated IA metadata, and not as part of a

network or computer. In general the use of OLP provides a higher level of flexibility and can

easier meet the future requirement for flexible information sharing than the traditional

information assurance solutions. It should be said that some existing solutions, like the Military

Message Handling System (MMHS) already apply some of the OLP principles.

2.1 Binding metadata to data

As described above the association between data and metadata is one of the key features of OLP.

The way this association is implemented is of utmost importance in order for protection

mechanisms to know which metadata belongs to which data and whether it can be trusted. There

are several ways to implement the association between data and metadata and this section takes a

closer look at some of the alternatives. The association is also known as a binding, and this

terminology is used for the remainder of this document.

In general there are two types binding; loose and strong binding. A loose binding simply provides

a link between the data and the metadata, while a strong binding is created by using cryptographic

mechanisms like signatures to ensure the integrity of the binding. Strong binding is therefore also

known as cryptographic binding. The principles presented by the reminder of this section apply to

both types of bindings.

The first possible solution for implementing the binding is to include the metadata in the actual

data object as outlined in Figure 2.2. This alternative provides an implicit binding by the fact that

they are located in the same data object, e.g. the same file. The obvious advantage of this solution

is that since the metadata is included in the data it is easy to identify which metadata to use and to

ensure that it is unique. The disadvantage is that the data object would have to be modified, which

is not always easy or even possible. In addition, changing the format of, or adding new metadata

would require a redesign of the data object. Even though this might be feasible for some data

formats, it is not a good solution for the generic case of applying a binding to any form of data

and metadata. This alternative is thus not recommended as it is not always possible or desirable to

change the data or data format. Using the same argument, it is not recommended to embed the

data object in the metadata either. The same disadvantages apply, and in addition it becomes very

difficult to add new types of metadata.

FFI-rapport 2012/00117 11

Figure 2.2 Embedding metadata in data

An alternative solution is to include a reference in the data object to the metadata, as outlined in

Figure 2.3. This alternative has many of the same advantages and disadvantages, and more

specifically there is still a need to modify the data in order to include the reference. However, in

contrast to the previous solution, adding new metadata would only require adding a new reference

and this reference might be standardised. If so, the need to change the data is now limited to

including these standardised references. Even though this is a less severe modification it is still a

modification to the data and the applicability of this cannot be guaranteed in the general case.

Again this solution is not recommended for implementing the binding between data and metadata

since it requires changes to the data object.

Figure 2.3 Reference to Metadata in Data

Alternatively a reference to the data might be embedded in the metadata object, as outlined in

Figure 2.4. Again this implies that all metadata must embed this reference, and this might not be

possible for all types of metadata. For instance older metadata types and the systems that use

them might not so easily be modified. For this reason this solution is not recommended either.

Figure 2.4 Reference to data in metadata

 12 FFI-rapport 2012/00117

In order to support all (or at least most) types of data and metadata without having to modify

either of them, a generic binding is needed. This can be done by introducing a separate binding

object, as shown in Figure 2.5. This solution does not present any requirements for change on

either the data or metadata. This is also the solution recommended by the NATO RTO IST-

068/RTG-031 working group; please see section 4.2 for a description of the proposed NATO

STANAG for XML metadata binding.

Figure 2.5 Reference to data and metadata in a separate binding object

With this solution there is still a need to specify how to use the elements. For instance where

should the different components be stored and how could they be retrieved? And how could one

assure the uniqueness of the binding? Standards and handling procedures must be established in

the future to handle these issues. This might include general or file/message format dependent

profiles describing how to use and include the binding objects. Dependent on the design and

requirements, the binding object might for instance be embedded into the data (if a new data

format is created or the existing data format can be adapted). A proposed NATO profile for

binding [4] has been developed by the NC3A based on the results provided by the NATO RTO

IST-068/RTG-031.

This section has focused on the generic binding mechanism and has not made any distinction

between loose and strong binding. For loose bindings the solutions presented here can be used

directly. To create a strong binding a cryptographic signature must be created. In general this

signature must cover the data, metadata and binding in order to be effective. For the

recommended solution of having a separate binding object, this would require a signature

covering all three objects.

3 Architecture for Cross-Domain Information Exchange

In order to share information between security domains a solution is needed that addresses the

challenges presented by section 1. With that in mind the architecture must prevent information

from leaking to a lower domain and malicious code from entering the high domain. A simple

view of the architecture proposed and demonstrated in the SOA Pilot is shown in Figure 3.1. In

this general architecture, each domain is protected by a guard solution. The reason for protecting

both domains with a guard is that it is not always clear which domain is the high and which is the

low. Typically when the domains are under different administration, like two different nations,

both would like to protect its own domain. In terms of OLP the guards become the protection

mechanism. Information is labelled using the IA metadata and a binding mechanism, and the

FFI-rapport 2012/00117 13

guard is configured to release information of certain classifications. Before releasing any

information, the guard compares the IA metadata to the policy in order to make a release

decision. In theory, this should prevent information from leaking to the other domain. In addition,

the guard must prevent malicious code from entering the domain.

It is important to note that the general guard architecture is not new and it has been utilised in for

instance the Norwegian military message handling system (MMHS). The guard architecture is

also similar to the Information Exchange Gateway (IEG) architecture developed within NATO.

The guard architecture described in this section and the guard solution described in this document

can as a result of this also be included as part of the IEG architecture.

Figure 3.1 Architecture for cross domain information exchange using guards

Use of the guard architecture and the solutions described here would enable interconnection

between security domains. However, which domains that can actually be connected will depend

on the assurance level provided. In general the required assurance level is a result of the types of

domains that are to be interconnected. For instance a solution connecting two unclassified

networks would require a lower assurance level than a solution for interconnecting an unclassified

and a secret domain. Achieving the highest level of assurance is both costly and time consuming,

if at all possible. Assurance levels may be based on the Common Criteria standards
1
.

The general architecture described can be deployed and used in the near future, and as mentioned

above already is by some existing solutions. However these deployed systems are limited in

1
 http://www.commoncriteriaportal.org/ (29.12.2011)

 14 FFI-rapport 2012/00117

functionality and can only exchange given formats or limited sets of information. In our proposed

architecture any information can be exchanged between the security domains as long as it is

associated (labelled) with the correct metadata and guards are used to protect the domain. These

guards are placed at the border of networks and as a result one security domain more or less

equals one network domain. In the future, the concept of Protected Core Networking (PCN) [5]

may be used to build the transport infrastructure. Using this concept the responsibility for

protecting information may be moved closer to the end systems, this involves both confidentiality

protection and access control. The advantage of this approach is that access decisions can be

based on the protection requirements of each individual object of information together with the

users’ credentials and not by which network the user or the information is currently situated. Two

possible solutions for realising this architecture are shown in Figure 3.2. It is highly likely that the

implementation of this long term vision would require using Multi Level Secure (MLS) systems

to separate information within the end nodes. The time frame for realisation of such a solution is

difficult to state, as it is dependent on tackling several challenges such as developing and

certifying an MLS system. Revision of current rules and regulations may also be necessary in

order to allow for it to be deployed.

Figure 3.2 Architecture for cross domain information exchange without physical network

separation

Introducing an architecture based on OLP and guards as outlined in this document, is important to

achieve a higher level of information exchange between security domains. Guards deployed at the

network borders are the only viable short term solution. Using a hybrid solution is a natural next

step forward in order to reach this goal. A hybrid solution involves keeping the network

separation and adding access control at the end systems. All these solutions have unsolved

challenges, for instance exchange of user credentials (certificates, authorization etc.) across

domain.

FFI-rapport 2012/00117 15

4 Proposed NATO Standards for Information Assurance
Metadata and Metadata Binding

The now terminated NATO RTO Research Task Group on XML in Cross Domain Security

Solutions (NATO RTO IST-068/RTG-031) explored the use of XML and related mechanism in

order to improve the sharing of information in a military environment, including between security

domains. As part of this work the group used the concept of OLP and defined both IA metadata

and a metadata binding. The main result from this group was two proposals for NATO

STANAGS, the XML Confidentiality Label and the XML Metadata Binding. Both were used

extensively during the SOA Pilot activity and are thus described in this document. These

standards are also included in the NISP (NATO Interoperability Standards Profile).

4.1 XML Confidentiality Label

The XML Confidentiality Label is a proposal for an XML formatted metadata that can be used to

describe the sensitivity of information. Traditionally sensitivity of information has been described

by the three attributes policy, classification and categories. Together these three attributes are

often somewhat inaccurately named security label. The XML Confidentiality Label includes these

and adds more attributes that can be used to express the need for protection. Since the former

security labels only included sensitivity, or confidentiality, constraints, it was more appropriate to

use the term confidentiality label for the new metadata. This section provides an overview of the

XML Confidentiality Label including a short description of the elements and attributes. For more

details the interested reader should read the standard proposal document [6].

The specification of the XML Confidentiality label provides a high degree of flexibility and the

fields can be populated in different ways to satisfy different use cases. This flexibility comes with

the cost of potential interoperability issues. In order to ensure full interoperability, profiles must

be established. A proposed NATO profile for the XML Confidentiality Label has been developed

by the NC3A [7] . It is important to note that the XML Confidentiality label can be used to

describe the sensitivity of any type of data, both XML and non-XML data formats.

The top level element of the proposed XML Confidentiality Label is named ConfidentialityLabel.

From Figure 4.1 we can see that it consists of four sub elements, of which one is mandatory.

These elements will be described in more detail later in the section. It also has two optional

attributes. The Id attribute can be used to provide a unique identifier of an instance of the

confidentiality label. In addition, the ReviewDateTime attribute can be used to provide a date for

when the label shall be reviewed. This can for instance be used to trigger a manual review

process.

 16 FFI-rapport 2012/00117

Figure 4.1 Top level components of the XML Confidentiality Label

The only mandatory element of the ConfidentialityLabel is the ConfidentialityInformation

element expanded and shown in Figure 4.2. It consists of the three elements PolicyIdentifier,

Classification and Categories. Of these elements the two first are mandatory, while the latter are

optional.

Figure 4.2 ConfidentialityInformation element

The PolicyIdentifier element is used to identify the security policy to which the confidentiality

label relates. It could either be specified as an URI, text string or both. In the latter case the URI

takes precedence in case of inconsistency. Similar the Classification element can be specified as

an URI, text string, integer value or a combination of an URI and text string or integer. The use

and interpretation of the classification element should be specified by the policy.

The final element of the confidentiality information element is the optional and repeatable

element Category, expanded in Figure 4.3. Categories are used to further refine the granularity of

sensitivity, for instance the permissive “releasable to” or restrictive “eyes only”.

FFI-rapport 2012/00117 17

Figure 4.3 Category element

The value of a category can be expressed by a bit string value, an integer value or a generic text

string. It can also be expressed by an URI attribute referencing a known category. The mandatory

attribute Type is used to signalise if the category is permissive, restrictive or informational.

Figure 4.4 OriginatorID element

OriginatorID is the second sub element of the ConfidentialityLabel and is shown in Figure 4.4.

This optional element may be used to convey the identity of the originator of the label in form of

a string. The type of ID can be specified in an attribute, for instance X.509 distinguished name.

Figure 4.5 CreationDateTime element

The third sub element of the ConfidentialityLabel is the optional CreationDateTime element

shown in Figure 4.5. As the name suggest this element can be used to provide information on

when the label was created, i.e. the date and time of the original classification.

 18 FFI-rapport 2012/00117

Figure 4.6 SuccessionHandling element

The final element of the ConfidentialityLabel is the optional SuccessionHandling element shown

in Figure 4.6. In essence this element specifies which label to use after a given time as specified

by the SuccessionDateTime element. The replacement label is given by the

SuccessorConfidentialityLabel element. The latter element is of the same type as the

confidentiality label, and can thus be seen as a nested or recursive label. The typical use-case for

this element is for information that has certain sensitivity only for a known period of time, and

after that a lower sensitivity. This mechanism can then be used to avoid having to re-label the

information.

4.2 XML Metadata Binding

One of the important building blocks of the OLP concept is the association between data and

metadata. This association is also known as a binding and informally this binding confirms that

the metadata belongs to the data. In section 2.1 different alternatives for realising this association

were presented. This section describes the proposed standard for XML metadata binding

produced by the NATO RTO IST-068/RTG-031 task group on XML in Cross Domain Security

Solutions. Again this document only provides a short description of the XML metadata binding

and the interested reader is referred to the STANAG proposal document [8] for more details.

The outline of the XML metadata binding is shown in Figure 4.7, it consists of the top level

element named MetadataBindingContainer and one or more MetadataBinding elements. It is the

latter element that actually provides the association between data and metadata. The top level

element MetadataBindingContainer is a convenience element for collecting more than one

metadata binding. This can be useful when for instance binding more than one metadata to

different parts of a document, e.g. different confidentiality labels to different sections.

In order for the MetadataBinding element to be valid it must have at least one metadata and one

data child element. This can either be the actual data and/or metadata embedded in the binding or

a reference to it. The MetadataBinding element can also have multiple metadata and data

elements, which semantically expresses that all the metadata belongs to all data elements. The

type of metadata must be specified using the mandatory type attribute. This attribute can take one

of three values; original confidentiality label, alternative confidentiality label and metadata.

FFI-rapport 2012/00117 19

In short, the first attribute is used for the current and prevailing confidentiality label, the second

for alternative labels and the third for all other types of metadata. The type original confidentiality

label can only be used once within a MetadataBinding element. Alternative labels can be used to

convey information for how to handle information when the original label is not understood in

another domain. For instance it may exist a bilateral agreement between nations that nation A can

handle secret information from nation B as its own secret information. The original label would

thus state nation B – Secret and the alternative label nation A – Secret.

Figure 4.7 Metadata binding

One of the important design considerations when developing the metadata binding was to be data

format agnostic. In short the implication of this choice was that the binding must be able to bind

any type of metadata to any type of data, also non-xml. In the xml metadata binding proposal this

can be achieved by using the metadata and data reference elements, thus referring to data and

metadata stored outside this XML object. This can of course also be used when the metadata and

data is specified in XML, but not included in the binding.

In itself, the MetadataBindingContainer and the MetadataBinding element(s) form a loose

binding. In order to provide a strong, or cryptographic, binding a digital signature covering the

metadata, data and metadata binding must be generated. How this was achieved in the SOA Pilot

using XML Digital Signature (XMLDSig) [9] combined with SOAP messages, is the topic of

section 5.3.

5 SOA Pilot 2011

The overall goal of the SOA Pilot was to demonstrate how SOA, and in specific Web services,

can provide value added to Command and Control Information Systems (C2IS) by exposing

information from different sources, including legacy systems. Demonstrating secure two way

information exchange between different security domains was a secondary goal. This section

describes the proposed solution for how this can be achieved. The proposed solution was

presented and demonstrated during the SOA Pilot.

 20 FFI-rapport 2012/00117

5.1 Scenario Overview

In short, the scenario used in the SOA pilot takes place in an expeditionary operation, were an

international coalition is involved. The mandate for this force is to protect civilians and initiate

the peace process. The method for achieving this is through symbolic use of force and economical

use of force. In more detail, the operation involves use of Tactical Units consisting of ground

teams under the command of a Tactical Command HQ. Also other units like a Navy Task force

and air capabilities are available. The order of battle (ORBAT) can be seen in Figure 5.1. The

details of the scenario can be found in [10].

Figure 5.1 ORBAT and security domains

Figure 5.1 also shows the different security domains that were used in the scenario. In general all

forces operate in a common security domain at the Mission Secret level. Using one common

security domain simplifies administration and minimises the restrictions put on information flows

between users and systems within this domain. The drawback of this solution is that there are

restrictions on what types of information that can be placed in the domain, for instance national

information can’t be included. It is however often a need to access and process national

information and it is likely that all nations that contribute to the coalition have a need for a reach

back to national HQs, and thus to a national security domain. In Figure 5.1 this is shown on the

left hand side were the National HQ is placed in a National Secret domain. Notice that the line

between the two security domains is dotted since there is no direct information exchange between

these two. In the scenario of the SOA pilot access to national secret information was provided by

a prototype multilevel terminal solution [11] providing access at both National Secret and

Mission Secret. It is important to note that all security domains described here and used during

the SOA Pilot were experimental.

FFI-rapport 2012/00117 21

The third and final security domain used in the SOA Pilot was Mission Restricted. As explained

above the overall goal was to keep most of the systems in a common security domain, however at

the lowest level of the ORBAT is a restricted domain. As shown in Figure 5.1 the soldiers and

soldier systems are placed in the Mission Restricted domain. The reason for placing these systems

in a lower classified domain is that they are inherently more difficult to protect, and thus the risk

of security compromise is higher. This includes equipment and systems carried by the soldiers in

the field. These are often resource constrained and cannot handle demanding security features.

Not to forget the simple risk of losing portable equipment and thus also information.

Since the Mission Secret domain is working by the system high principle, it can contain

information that can be shared with the Mission Restricted domain and systems deployed there.

This information may be highly valuable for the users of the systems deployed at the lower level

and the need for two way information exchange is thus clear. In order to achieve this while

ensuring that only the allowed information is passed, a guard is deployed between the Mission

Secret and Restricted domains. This guard protects the high domain from information leakage.

More specific, the scenario identifies a need for exchanging tracks in the form of NATO Friendly

Force Identifier (NFFI) messages between clients in the Mission Restricted and Mission Secret

domains. In addition information will flow from the Mission Restricted domain to the Mission

Secret domain, for instance will each soldier report her position. This information flow is not

restricted or controlled in any way in this experiment, since the focus is on the secure release of

information.

The general architecture used for achieving information flow between the security domains is

outlined in Figure 5.2. An instance of the prototype XML/SOAP guard is placed between the two

different simulated security domains. The task of this guard was to control the information flow

from the high to the low domain.

Figure 5.2 Simplified architecture and deployment model

5.2 Software description

This section provides an overview of the software developed and used for exchanging

information between security domains in the SOA Pilot. In general this includes a

prototype/demonstrator XML/SOAP Guard and the implementation of an NFFI request/response

Web service. The latter software also includes functionality to apply XML Confidentiality Labels

 22 FFI-rapport 2012/00117

and the XML Metadata binding to SOAP messages. The guard includes functionality to verify the

same labels and bindings.

5.2.1 Prototype XML/SOAP Guard

The prototype XML/SOAP Guard used during the SOA Pilot is actually the result of a series of

experiments and demonstrations. This series started with cross-domain experiments at the NATO

Coalition Warrior Interoperability Demonstration (CWID) in 2006 [12], and continued with

CWID in 2007, Oasis Final Event in 2008, and CWID in 2009 [13-15]
 2
. The prototype

XML/SOAP Guard reached its current state with the development for the SOA Pilot. The

experiments listed above have all been performed to support, test and develop solutions for secure

cross domain information exchange using the Object Level Protection paradigm, and especially

the development of the XML Confidentiality Label and the XML Metadata Binding. The

prototype guard has been an important tool for testing and verifying the proposed specifications

as they were developed. The main reason for developing the prototype XML/SOAP Guard has

been to verify the proposed principles and standards, and not to develop a guard product. As a

consequence the XML/SOAP Guard has not been evaluated or certified.

Conceptually the prototype XML/SOAP Guard handles the exchange of information between a

high and a low domain, and the main functionality is release control for SOAP messages from a

high to a low domain. The release control functionality ensures that only information that is

allowed by policy is passed to the low domain, thus preventing information leakage. In order to

implement the release control the guard depends upon messages being labelled, including the use

of cryptographic bindings. In the current version of the guard the release policy is configurable

and expressed by an XML Confidentiality Label. The release control functionality compares the

label(s) from the message to this policy label in order to decide if the message can be released or

not. The main functional components of the XML/SOAP Guard is shown in Figure 5.3 and

described below. It is important to note that this figure shows the configuration of the guard used

in the SOA Pilot and other configurations can be used if required. As shown in Figure 5.3

messages from the low domain are passed through the guard directly without any modifications

while the release handling of messages from the high domain can be broken down into three

functional components. In addition, error handling is performed. Protecting the high domain

against cyber-attacks and other threats has, although important, been defined as out of scope for

this work.

2
 From 2010 CWID was renamed and is now known as CWIX – Coalition Warrior Interoperability

Exercise

FFI-rapport 2012/00117 23

Figure 5.3 The main functional components of the XML/SOAP Guard

A message from the high domain is initially processed by the Signature checker component. In

the SOA Pilot, it was a requirement that all information that was to be passed through the guard

was labeled and that labels and data were bound using a cryptographic binding. The

cryptographic binding is achieved using XML Digital Signature and SOAP Message Security

[16]. The signature checker component first of all checks the existence of a digital signature and

if not present the message is not allow to be passed and is thus discarded and an error message is

generated. An error message is also generated and the message is stopped if the actual signature

verification fails. In addition certificate validation can cause the message to be stopped if a

certificate is invalid, for instance if it has expired or has been revoked. For simplicity,

certification validation was not enabled during the SOA Pilot.

If the message passes the Signature Checker it is forwarded to the Label Checker. The purpose of

the label checker is dual, first it checks if the message is correctly labeled and second it checks if

the label is approved for release. The first check involves checking if a label is actually present

and if so, a check if it is valid. If any of these tests fail, the message is stopped and an error

message is generated. If the label exists and is valid, the label is checked versus the policy label.

Release is approved if the labels have the same policy identifier and the classification of the

message label is equal or lower than the classification of the policy label. In addition, if categories

are present these must also be verified. Categories were not used during the SOA Pilot.

A message can potentially contain several labels that mark different parts of the message. If all

labels contained in a message fail the policy check, the message is stopped and an error message

is generated. Else if all labels are approved for release by the policy check the whole message is

released to the low side. Alternatively if some labels are approved and some are disapproved,

then the message is forwarded to the message sanitation functional component.

 24 FFI-rapport 2012/00117

The third and final processing step performed by the guard before releasing the message to the

low domain, is message sanitation. This involves removing the parts of the message that is not

allowed to be passed to the low domain. This also involves removing the given confidentiality

label from the message. If the label is not removed it might be possible for users at the low

domain to infer some information on what type of data that was originally included. The

information inferred can also be seen as information leakage. The resulting message from

sanitation is released to the low domain. However during message sanitation, the message may

become corrupt. If so the message is stopped and an error message is generated. Also as a result

of message sanitation the digital signature is broken and thus also the cryptographic binding

between the confidentiality label(s) and data. There are essentially three options for handling this,

first to drop the whole message, second to resign the new message at the guard or finally remove

the signature. The latter alternative was chosen for the SOA Pilot since no formal trust

relationship was established between the two domains. The lack of for instance federated identity

or federated PKI meant that the signature could not be verified in the receiving domain and the

signature was thus less valuable.

The implementation of the prototype XML/SOAP Guard is based on the open-source Apache

TCPMon software
3
. Originally TCPMon is a utility that allows users to monitor messages that are

passed back and forth in a TCP based conversation. TCPMon can be executed in different modes,

either as an explicit intermediate, as a client for Web services or finally as a proxy (either pure

TCP proxy or with HTTP Proxy support). For the implementation of the prototype XML/SOAP

Guard the TCPMon software is extended with the message and label handling described above.

The prototype XML/SOAP Guard utilise the HTTP Proxy mode of TCPMon. The guard acts as

an HTTP Proxy and interaction with it must be accordingly, the different interaction patterns are

outlined in Figure 5.4. In general for a designer or developer the guard adheres to the proxy

programming model, and a client must thus be able to address the guard as an intermediary HTTP

Proxy in order to use a service situated in the other domain.

The first interaction shown in Figure 5.4 is between a client in the high domain and a service in

the low domain. In order for the client to reach the service, it must add a confidentiality label to

the request and send it via the XML/SOAP guard. The guard inspects the label(s) of the request

and compares them to the given policy and as a result of this the message is either released,

discarded or parts of it are removed/sanitised before it is released. The reply from the service is

forwarded without modifications from the service to the client.

3
 http://ws.apache.org/commons/tcpmon/ (29.12.2011)

FFI-rapport 2012/00117 25

Figure 5.4 Interaction patterns for the prototype XML/SOAP Guard

In the second interaction pattern of Figure 5.4 the client is placed in the low domain and the

service in the high domain. In this case the client only needs to direct the original request message

to the service using the guard as an HTTP proxy. No labelling is required as the request is

forwarded without modifications to the service. In order for the reply to pass the guard, the

service must apply confidentiality labels to the generated reply message. When the reply message

is intercepted by the guard it is inspected and handled as described above and the message is

either stopped, sanitised or forwarded.

While the interaction patterns described above both use request/response Web services, the final

involves the use of publish/subscribe Web services. Again, the client is in the low domain and the

service in the high domain. In this situation the subscription request message does not need to be

labelled as it originates in the low domain. However the subscription response message would

have to be labelled in order to pass the guard. Also every subsequent notification message must

be labelled in order to pass the guard. Again the guard could either discard, sanitise or forward the

message unmodified as a consequence of the given policy. If the client is situated in the high

domain only the initial request would have to be labelled. This is not shown in the figure, but is

more or less equivalent to the first interaction pattern.

 26 FFI-rapport 2012/00117

Figure 5.5 Dual guards deployment

The above description of interaction patterns with the prototype XML/SOAP Guard is based on

the assumption that only one of the domains is protected. Often the situation is that both domains

need to be protected. For instance, in a scenario where a National Secret domain and a Coalition

Secret domain are to be interconnected, both could be regarded as the high domain. The reason

for this is that from the national perspective the National Secret domain is the high domain, and

from the coalition perspective the Coalition Secret domain is the high domain. In this situation it

would be natural that both apply local guards to protect their domains as shown in Figure 5.5. The

guards would then need to forward messages to the next one in the chain. The prototype supports

static configuration of a next guard/HTTP proxy.

It should be emphasised that the prototype XML/SOAP Guard implementation is experimental

and should be handled and used accordingly. There are also some implementation issues that

must be taken into consideration when using the guard. Known issues include but are not limited

to missing support for HTTP chunking.

5.2.2 NFFI Request/Response Service and Client

In the scenario used for the SOA Pilot, a need and requirement to share tracking information

between the Mission Secret and Mission Restricted domains is identified (see section 5.1). Also,

the NATO Friendly Force Information (NFFI)[17] specification was chosen as the preferred

solution for sharing track information. It was also decided to develop a SOA Viewer [18], an

independent solution for viewing information available in the network. Remember that the main

purpose of the SOA Pilot were to demonstrate the effect of service orientation by making

information from legacy systems available as Web services. In short the main functionalities of

the SOA Viewer are track and incident handling (including simple GIS capability for showing

tracks on a map), chat and service discovery. The SOA Viewer retrieves tracks and incidents by

subscribing to publish/subscribe track services. The tracks are stored in the internal track store of

the SOA Viewer. In turn the SOA Viewer can publish these tracks to other interested parties, i.e.

an aggregated service.

FFI-rapport 2012/00117 27

The functionality provided by the SOA Viewer made it an obvious choice for distributing

tracking information between security domains as well. Also the fact that the source code was

available made it easy to include the labelling and binding software. In terms of information flow

a SOA Viewer deployed at the Mission Restricted level would then retrieve tracking information

from a designated SOA Viewer at the Mission Secret domain. The track information in the

Mission Secret SOA Viewer is aggregated from several different sources, including legacy C2

systems. Use of publish/subscribe for information exchange was one of the important features of

the SOA Pilot, and originally it was intended to use this for the cross domain exchange of

information as well. However during the development phase there were many elements of

uncertainty associated with the choice of publish/subscribe platform and thus also how to include

the labelling and binding software. As a result of this uncertainty, it was decided to design and

implement a request/response NFFI Web services that include the labelling and binding as part of

the SOA Pilot, and to use this for the cross domain information exchange. Since the SOA Viewer

was to be used in both domains as described above, it was natural to embed both the service and

client software into this. A schematic overview of the SOA Viewer is shown in Figure 5.6. The

NFFI request/response Web services extensions are shown in green in this figure.

Figure 5.6 The SOA Viewer with NFFI request/response service and client

As can be seen from Figure 5.6 two components were added to the SOA Viewer to enable the

NFFI request/response functionality; the actual service implementation and a client. Execution of

these components is optional and they can be configured to start as needed. The NFFI

request/response client is a simple implementation of a Web service client. It provides

functionality to send NFFI SOAP request messages at a configured interval to a NFFI

request/response service and to handle the result. The received tracks are stored in the internal

 28 FFI-rapport 2012/00117

track store of the SOA Viewer and the display is updated with the new tracks. The NFFI SOAP

requests are predefined. The client can also be configured to label the request message using the

XML Confidentiality Label and the XML Metadata Binding. Labelling a request message is

necessary when the client is situated in the high domain and the service in the low domain and it

must pass an XML/SOAP Guard. Since information can be embedded in the request it must thus

be labelled and protected. This was not used during the SOA Pilot since it was always the client

in the low domain who issued the request to a service in the high domain.

The NFFI request/response service, the second component added to the SOA Viewer, implements

a simple version of the request/response Web service defined in the NFFI standard. In short the

NFFI request/response service implemented receives an NFFI SOAP request message and all

tracks available are then extracted from the internal track store and passed back in an NFFI return

SOAP message. The NFFI request is validated against the NFFI XML Schema to ensure that it is

a valid request message. The NFFI request/response Web service defined by the NFFI standard

also handles user defined filters in a request message. These filters can be used by the client to

tailor the returned data set to fit its needs. These filters and the possible values are described in

the NFFI standard documents and XML schemas. The filters can for instance be used to specify a

given geographical area, or a given system to receive track information from, or to limit the

number of tracks to be returned. The simple request/response NFFI service included in the viewer

application does not support this and is as such not adhering to the NFFI standard. The NFFI

request/response service is implemented using the lightweight, open-source Jetty Web Server and

Servlet Container
4
.

In addition to the functional parts of the service described above, it also applies XML

confidentiality labels and XML metadata bindings to the return messages. As a general rule

labelling of information should happen as close to the source of information as possible. The

reason for this is that users and systems that generate information also often are best placed to

judge the original sensitivity of the information. This might be the original producer of

information or users and systems that refine or compose new information. In the SOA Pilot a very

simple scheme for defining the values of the labels was chosen. It was decided that information

from a given set of systems was to be labelled Mission Secret and the rest Mission Restricted.

This simple scheme was chosen since the systems generating track information either did not

support labelling of information or access to the systems were limited. Also, the main focus of

this activity during the SOA Pilot was on the guard and verification of labels in the guard. The

NFFI request/response service applies labels and bindings as outlined in section 5.3.

5.3 Applying XML Confidentiality Label and Binding to SOAP Messages

Sections 4.1 and 4.2 outlined the proposed XML Confidentiality Label and the XML Metadata

Binding standards respectively. How these proposed specifications are used to apply labels to

SOAP messages in the SOA Pilot are the topic of this section. Since the label and binding

specifications are general purpose and can be used to solve many use-cases, separate profiles

4
 http://www.eclipse.org/jetty/ (29.12.2011)

FFI-rapport 2012/00117 29

must be established for using them in combination with specific data and message formats. The

solution chosen for the SOA Pilot has also been used in previous experiments using labels in

combination with SOAP messages. Some of the lessons learned from these experiments have also

been incorporated in the two proposed NATO profiles for XML Confidentiality Label and XML

Metadata Binding. How to use the label and binding specification in combination with SOAP

messages is also part of the CWID 09 demonstrator specification [15].

First a short description of the SOAP message format. As shown in Figure 5.7 a general SOAP

message consists of three parts; a mandatory outer SOAP Envelope, which contain a SOAP

Header element and a SOAP Body element. The latter is mandatory and used to carry the actual

message containing application data. The SOAP Header is optional and as the name suggests used

to convey header information such as application specific information and security information.

Figure 5.7 Generic SOAP message

The XML confidentiality label and binding are both in essence metadata describing the data

contained in the body part of the message, it is thus natural to place these in a SOAP header

element. Since it is allowed to add headers to already existing message formats, this solution also

makes it possible to bind labels to already existing SOAP messages without changing the format.

This flexibility makes it a more general purpose solution. When defining how the XML binding

and confidentiality labels are to be used in combination with SOAP messages reuse of existing

standards is an important factor. Even though there are no restrictions on developing and using

headers, many are standardised to ensure interoperability. One of these headers is the Security

header defined in the Web services Security (WS-Security) Core specification developed by

OASIS (Organization for the Advancement of Structured Information Standards)
5
. According to

this specification the security header provides a mechanism for attaching security related

information. Since the binding and confidentiality label is information assurance related

information, it was natural to include these in this header. In addition the confidentiality label(s)

was included in the metadata binding (se section 4.2 for details of how to use the binding) since a

SOAP message should be self-contained and thus should not have reference to external labels.

SOAP is an XML based message format and it is important to know how to interpret the presence

of an XML confidentiality label in this context. XML can be viewed as a tree with a set of parent,

child and sibling nodes. The top level node is often called the root node. A label can be applied to

each node as can be in seen Figure 5.8. However, care has to be taken when combining labelling

5
 http://www.oasis-open.org/ (29.12.2011)

 30 FFI-rapport 2012/00117

with automatic filtering. Since XML is tree based, removing a node of a certain classification may

have implication on nodes of other classifications since it also implies removing any child nodes.

In Figure 5.8, using a filter to remove all nodes of classification restricted also results in removing

one unclassified node. Keeping the unclassified node would result in a document that is either not

valid XML or invalid according to the defined XML format (for instance by an XML schema).

Figure 5.8 Binding semantics when applied to XML

Another effect of this is that using traditional high-water mark labeling, as is known from the

world of paper documents, will not work. In short, this can be described as the whole document

inheriting the highest classification of each section or paragraph of a document. Applying this to

XML and XML labels are shown in Figure 5.9. The effect is that the whole document is actually

removed when applying a filter removing restricted nodes. Regardless of this property, if the

combined information content of two or more unclassified child elements put together are of a

higher classification the parent must be labelled accordingly.

Figure 5.9 Effect of using high watermarking and filtering

The description in this section has so far not made any distinction between loose and strong

bindings. Loose bindings may be sufficient in some cases, but in order to achieve a higher level of

FFI-rapport 2012/00117 31

trust, a cryptographic binding must be used. Again since the reuse of existing standards and

software are important, the mechanisms described in the WS-Security standards are reused, more

specifically the signature part of this standard. This describes how the XML Digital Signature

standard (XMLDSig) can be used to generate a digital signature over the whole or parts of the

message and how to embed it. The Signature part of the WS-Security standard is used to generate

a cryptographic binding (also known as a strong binding). For the SOA pilot a single signature

were used to cover the whole message since the outer part of the message was labelled. This

scheme meant that during message sanitation the signature was broken, and thus also the

cryptographic binding. However, for the SOA Pilot activity the release control of information was

most important and not propagation of trust in the label and binding to the lower domain. Another

scheme must be used if this is important, for instance only sending messages with content with a

single classification or having the guard re-bind and re-sign the message. The implications of this

have not been considered.

Figure 5.10 SOAP Message with embedded Confidentiality Labels and cryptographic binding

 32 FFI-rapport 2012/00117

Figure 5.10 shows a schematic view of a SOAP message that is labelled according to the

description above. The SOAP message transports tracking information in the form of an NFFI

message. In total three tracks are included in the message. Two of these are of classification

Mission Secret, as shown by the label in the header, and one track is of classification Mission

Unclassified. It is worth noticing that there are two Mission Unclassified labels, one used for

labelling the application data objects of this message and one used as a default for labelling the

top level of the message. The latter label ensures that the parts of a SOAP message that is not

application data cannot be used as a channel for information leakage, for instance by using XML

attributes. Also, leaving the top level unlabelled allows a guard or other protection mechanism to

decide to stop the whole message since parts of it is not labelled. The guard or other protection

mechanisms cannot make the assumption that unlabelled corresponds to unclassified. How to

handle unlabelled element should be specified by the policy. A separate Mission Unclassified

label is used for the application data in order to be able to preserve the confidentiality

information. This way the information can be stripped out of the SOAP message and passed to for

instance a tracking application. Since the whole message is labelled, a single signature covering

the whole message is used to provide a cryptographic binding between labels and data. For the

interested reader with knowledge of XML, an example SOAP message that is labelled using a

strong binding can be found in Appendix A.

5.4 SOA Pilot Execution

The actual execution of the SOA Pilot took place in the lab during the spring of 2011. During the

SOA Pilot execution clients in the low domain, representing the soldier systems as described in

the scenario, requests tracking information from the NFFI service in the high domain. The latter

service exposes the track store of the given SOA Viewer and thus also this nodes view of the

Common Operational Picture (COP). A screen shot of the SOA Viewer at a given time in the

scenario is shown in Figure 5.11, and shows its version of the COP. At this point in time there are

five tracks in view; one vehicle, three dismounted soldiers and one UAV flying over the area.

These tracks are returned by the NFFI request/response service after being labelled and signed.

The low side NFFI request/response client sends its requests through the XML/SOAP guard to

the high side service. This service in turn builds a return message containing the tracking

information available in its track store, labels and signs this message and passes it back to the

guard. The guard applies its policies and mechanisms to the message and removes information

that is not allowed to pass. The resulting COP on the low side SOA Viewer can be seen in Figure

5.12. The low side COP consist of four tracks; one vehicle and three dismounted soldiers. So at

the same time in the scenario the two COP views differ. The soldier can see his own position, the

position of his team mates and the position of the vehicle. In the viewer at a higher level tracking

information about the UAV is available as well. The reason for this difference is that the UAV

track information is classified as Mission Secret and is thus removed from the reply message to

the low side client. The net result is that only information of classification Mission Restricted or

lower is shown in the low side SOA Viewer.

FFI-rapport 2012/00117 33

Figure 5.11 High side view of the COP

Figure 5.12 Low side view of the COP

 34 FFI-rapport 2012/00117

The role of the XML/SOAP guard is essentially to stop information from leaking from the high

side to the low side, while still enable the flow of permissible information. Figure 5.13 shows a

screen shot of the guard UI while in action. The main functionality of the guard UI is to start and

stop guard instances, and also to inspect the information flow. It is important to note that the

guard UI is only used for inspecting the result of the actions taken by the guard and for debugging

purposes. As a result user requirements have not been considered when developing the interface.

At the top level the user can choose which message dialogue to inspect, the chosen message is

shown in the lower two panes. The left hand side shows the request message while the right one

shows the return message. The guard UI always show messages that are processed by the filtering

mechanism, i.e. it shows the messages that are actually released to the low domain. The message

processed by the guard can either be the request or the response dependent on which side the

request is generated. If the initial request comes from the high side, the left side pane shows the

request as processed and filtered by the guard. Or, as the case was in the SOA Pilot, if the request

comes from the low side, the right hand side shows the processed and filtered return message. In

Figure 5.13, a Mission Unclassified request message (left hand side) is sent from the high side to

the low side. And the low side service response is shown on the right hand side. Note that this

particular example shows interaction with a different service than the NFFI service described in

this document.

Figure 5.13 Screen shot of prototype XML/SOAP Guard

FFI-rapport 2012/00117 35

6 Future Work

The work presented in this document represents an important contribution to the possible future

implementation of secure exchange of information between security domains. Nevertheless, this

does not constitute a full solution that can be used in an operational setting and there is still

unsolved issues that must be addressed in future work. These includes, but are not limited to

topics like cross domain key exchange and trust propagation and also cross domain identity

management and identity federations.

Standardising the XML Confidentiality Label and XML Metadata Binding specification should

be a priority in order to stop the development of proprietary solutions. Thus, standardisation of

these specifications is important to ensure interoperability between implementations. Actually the

standardisation process has been started and is aiming for NATO standardisation as a first step.

The specifications have been handed over to the NATO HQ C3 staff for evaluation. However,

due to the re-organising of the NATO C3 Board (NC3B) structure it has been difficult to task the

correct working group to perform the actual evaluation. The standardisation process has as a

result been lingering in the system. Registration in the NATO Interoperability Profile (NISP) and

NATO Metadata Registry & Repository (NMRR) are as a result also pending. As the new

structure of the NC3B is slowly emerging it is likely that the standardisation process will pick up

momentum.

The next steps planned for the work performed at FFI are the development of a high assurance

guard solution and the development of a concept for trusted labelling and signing. The guard

solution presented in this document is a low assurance prototype guard that is not certified

according to any process like the Common Criteria (CC). Since the guard has not been certified it

cannot be used in operational systems. Due to the way it is implemented, it is not feasible to get

the current version of the guard certified either. We aim to develop a new version of the guard

with more or less the same functionality that should be certifiable to EAL-5. In order to achieve

this we plan to utilise the MILS architecture [19].

A high assurance guard solution would need to trust the input it is provided in order to make the

correct decision. Input to the guard includes labels, bindings and actual data. Generating trusted

labels and signatures is as a consequence very important. The primary goal is to produce a

concept that describes how this can be realised. This also involves adding labels in a trusted way

to ensure that data does not receive a lower classification than intended. Also a trusted signature

process is important to ensure that the signature covers the data needed and not more. This is

equal to the problem of knowing that what is intended to be signed is actually signed when a user

presses sign in an application. What is probably needed is some kind of What You See Is What

You Sign (WYSIWYS) application. Trust, certificate distribution and identity management would

also be affecting the trusted labelling and signing.

 36 FFI-rapport 2012/00117

7 Summary

In general the SOA Pilot demonstrated how SOA, and in specific how Web services, can be used

to make information available from different sources. These sources may include existing legacy

systems and other sources. Exchanging this information between different security domains in a

secure way has been the topic of this document. Security domains are typically used to protect the

confidentiality of information and to avoid disclosure by not allowing information to flow from a

high to a low domain. However, since the high domain can contain information of a lower

classification there is a need to share this with users in lower domains.

This document has presented a proposed solution that enables secure information exchange

between security domains. It relies heavily on the concept of Object Level Protection (OLP) and

the use of metadata to inform the security mechanisms of how to handle it. The proposed NATO

standard for the XML Confidentiality label is used as metadata in the solution to describe the

sensitivity of information. The proposed NATO standard for XML Metadata binding is used to

cryptographically bind the metadata to the data. In the SOA Pilot the secure release of

information from a high to a low domain was successfully demonstrated. The solution used a

prototype guard processing labelled SOAP messages, releasing only information with labels that

are allowed to be released. Information with labels of a higher classification, or unlabelled

information, was stopped at the guard.

It is important to note that the software and also the concepts described in this document and

demonstrated during the SOA Pilot are not certified or formally evaluated. The software should

thus be handled accordingly. Through the experimentation and demonstrations performed during

the SOA pilot, the potential for the proposed solution for solving the problem of securely

exchanging information between security domains has been shown. This has also been verified by

previous experiments and demonstrations. Using the concepts described in this document should

provide a viable path for implementing automatic two way information exchange between

security domains.

References

 [1] D. Bell and L. LaPadula, "Secure Computer Systems: Mathematical Foundations,"
MITRE Corporation, Bedford, MA,Technical Report MTR-2547, Vol I, 1973.

 [2] D. Bell and L. LaPadula, "Secure Computer System: Unified Exposition and Multics
Interpretation," MITRE Corporation, Bedford, MA,Technical Report MTR-2997 Rev. 1,
1975.

 [3] P. Bartolomasi, T. Buckman, A. Campell, J. Grainger, J. Mahaffey, R. Marchand, O.
Kruidhof, C. Shawcross, and K. Veum, "NATO Network Enabled Capability Feasibility
Study, Version 2.0," 2005.

 [4] S. Oudkerk, "NATO PROFILE FOR THE BINDING OF METADATA TO DATA
OBJECTS,"NC3A Reference Document 2977 (NATO UNCLASSIFIED), 2010.

FFI-rapport 2012/00117 37

 [5] G. Hallingstad and S. Oudkerk, "Protected core networking: an architectural approach
to secure and flexible communications," IEEE Communication Magazine, vol. 46, no.
11, pp. 35-41, Nov.2008.

 [6] A. Eggen, R. Haakseth, S. Oudkerk, and A. Thummel, "XML Confidentialty Label Syntax -
a proposal for a NATO specification,"FFI-rapport 2010/00961 (NATO UNCLASSIFIED),
Apr.2010.

 [7] S. Oudkerk, "NATO PROFILE FOR THE XML CONFIDENTIALITY LABEL SYNTAX,"NC3A
Reference Document 2903 (NATO UNCLASSIFIED), 2009.

 [8] A. Eggen, R. Haakseth, S. Oudkerk, and A. Thummel, "Binding of Metadata to Data
Objects - a proposal for a NATO specification,"FFI-rapport 2010/00962 (NATO
UNCLASSIFIED), Apr.2010.

 [9] D. Eastlake, J. Reagle, D. Solo, F. Hirsch, T. Roessler, M. Bartel, J. Boyer, B. Fox, B.
LaMacchia, and E. Simon, "XML Signature Syntax and Processing (Second Edition),"
World Wide Web Consortium (W3C), http://www.w3.org/TR/xmldsig-core/,2008.

[10] R. Rasmussen, "Experiment Report: SOA Pilot 2011," FFI-rapport 2011/02407 (U),
2011.

[11] N. A. Nordbotten and T. Gjertsen, "Towards a certifiable MILS based workstation," FFI-
rapport 2012/00049 (U), 2012.

[12] R. Rasmussen, A. Eggen, D. Hadzic, O.-E. Hedenstad, R. Haakseth, and K. Lund,
"Experiment report: "Secure SOA supporting NEC" - NATO CWID 2006," FFI rapport
2006/00325 (U), 2006.

[13] R. Haakseth, T. Gagnes, D. Hadzic, T. Hafsøe, F. T. Johnsen, K. Lund, and B. K. Reitan,
"Experiment report: "SOA - Cross Domain and Disadvantaged Grids" - NATO CWID
2007," FFI-rapport 2007/02301 (U), 2007.

[14] R. Haakseth and M. Andreassen (Thales Norway), "Oasis demonstration - secure
information exchange between military and civilian systems," FFI-rapport
2009/00319 (U), 2009.

[15] R. Haakseth, M. Andreassen (Thales Norway), and J. Craigie (Clearswift), "CWID 09
demonstrator specification," FFI-notat 2009/02211 (U), 2009.

[16] OASIS, "Web Services Security: SOAP Message Security 1.1," 2004.

[17] R. Malewicz, "NATO Friendly Force Information (NFFI) (version 1.2) Interface
Protocol Definition IP3, NC3A Working Document," 2006.

[18] K. Lund, F. T. Johnsen, T. H. Bloebaum, and E. Skjervold, "SOAPilot 2011: Web service,"
FFI-rapport 2011/02235 (U), 2011.

[19] T. Gjertsen and N. A. Nordbotten, "Multiple independent levels of security (MILS) : a
high assurance architecture for handling information of different classification levels,"
FFI rapport 2009/01137 (U), 2009.

 38 FFI-rapport 2012/00117

Appendix A Labelled and signed SOAP Message

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Header>

 <Security xmlns="http://docs.oasis-open.org/wss/2004/01/oasis- 200401-wss-

wssecurity-secext-1.0.xsd"

 xmlns:ns0="http://schemas.xmlsoap.org/soap/envelope/"

ns0:mustUnderstand="1">

 <MetadataBindingContainer xmlns="urn:int:nato:ia:metadatabinding:draft"

Id="MetadataBindingContainer">

 <MetadataBinding>

 <Metadata metadataType="OriginatorConfidentialityLabel">

 <slab:ConfidentialityLabel

xmlns:slab="urn:int:nato:ia:xmlsecuritylabel:xmlconfidentialitylabel:draft"

Id="defaultLabel">

 <slab:ConfidentialityInformation>

 <slab:PolicyIdentifier

URI="urn:oid:1.2.3.4">MISSION</slab:PolicyIdentifier>

 <slab:Classification>1</slab:Classification>

 </slab:ConfidentialityInformation>

 </slab:ConfidentialityLabel>

 </Metadata>

 <DataReference URI=""/>

 </MetadataBinding>

 <MetadataBinding>

 <Metadata metadataType="OriginatorConfidentialityLabel">

 <ConfidentialityLabel

xmlns="urn:int:nato:ia:xmlsecuritylabel:xmlconfidentialitylabel:draft"

Id="label-1">

 <ConfidentialityInformation>

 <PolicyIdentifier

URI="urn:oid:1.2.3.4">MISSION</PolicyIdentifier>

 <Classification>3</Classification>

 </ConfidentialityInformation>

 </ConfidentialityLabel>

 </Metadata>

 <DataReference URI="#BodyElem-1"/>

 </MetadataBinding>

 <MetadataBinding>

 <Metadata metadataType="OriginatorConfidentialityLabel">

 <ConfidentialityLabel

xmlns="urn:int:nato:ia:xmlsecuritylabel:xmlconfidentialitylabel:draft"

Id="label-2">

 <ConfidentialityInformation>

 <PolicyIdentifier

URI="urn:oid:1.2.3.4">MISSION</PolicyIdentifier>

 <Classification>2</Classification>

 </ConfidentialityInformation>

 </ConfidentialityLabel>

 </Metadata>

 <DataReference URI="#BodyElem-2"/>

 </MetadataBinding>

 <MetadataBinding>

 <Metadata metadataType="OriginatorConfidentialityLabel">

 <ConfidentialityLabel

xmlns="urn:int:nato:ia:xmlsecuritylabel:xmlconfidentialitylabel:draft"

Id="label-3">

 <ConfidentialityInformation>

 <PolicyIdentifier

URI="urn:oid:1.2.3.4">MISSION</PolicyIdentifier>

 <Classification>1</Classification>

 </ConfidentialityInformation>

 </ConfidentialityLabel>

 </Metadata>

FFI-rapport 2012/00117 39

 <DataReference URI="#BodyElem-3"/>

 </MetadataBinding>

 </MetadataBindingContainer>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-

c14n-20010315#WithComments"/>

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-

sha1"/>

 <Reference URI="">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-

signature"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>zPmCAdRCnLhfCeE+62ukUA2TWS8=</DigestValue>

 </Reference>

 </SignedInfo>

<SignatureValue>bIIekVcIICw9bE4VzFoZH+JaFAQeV3j1M0nreyhLUPObfFIDIujYN/fAH18y+mzo

c9b5HBu52KLS

YGlNGl7WavcZmQavf5iEQWoh7HLuTTsEqCIMhKHsBhh/w8CRWtQN/ryFjoEibgEAAXfS0ee1y2On

 HRuTT8oYc4pe/hWHqdQ=</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>

MIICUzCCAbygAwIBAgIBCDANBgkqhkiG9w0BAQUFADA8MQswCQYDVQQGEwJOTzEMMAoGA1UEChMD

RkZJMQ0wCwYDVQQLEwQyMDA4MRAwDgYDVQQDEwdSb290IENBMB4XDTA5MDUxNDExMjUwNVoXDTEw

MDUwNTExMjUwNVowRzELMAkGA1UEBhMCVUsxEzARBgNVBAoTCkNMRUFSU1dJRlQxDTALBgNVBAsT

BDIwMDkxFDASBgNVBAMTC25mZmktY2xpZW50MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDZ

kSRlxrcQr1Ml5J6jdas+CqbsMGDwsBI8OOQRBIOHulsvJrOjeSKonx3LGJkHmM3hvqYDkYFA0pgQ

0rvMJa1iXbdfbH7V9SHDGrvMmjM+acp9OrlWJDFj/+lVFyMYhDrPDYViuw2tAhY8LUq4L6c0Vro2

MDiN1XpRxwsPcnwisQIDAQABo1owWDAdBgNVHQ4EFgQUs+RxD4zMbe+DIfbnD0k5K5uQoNAwHwYD

VR0jBBgwFoAULePS3tA7Zym+G/rHMgIqYavNSJgwCwYDVR0PBAQDAgbAMAkGA1UdEwQCMAAwDQYJ

KoZIhvcNAQEFBQADgYEAEg4Ym/aVnUtU1/WzLbKaRzQPr8G9EsZ9S7w2Q/wlEd68LyxFFd6q5jEp

OwCDerHAC1rRYPrJf4kPm29t+QuOiOk0lSjtsK2Vu13ooU5N0wboF6h/XCCELq6xlQUbI4QQrxgx

hoR7Qs3bKmtYg+U02pe99uxRfO4VJjvSiFwM2aA=</X509Certificate>

 </X509Data>

 </KeyInfo>

 </Signature>

 </Security>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <pullNFFIResponse xmlns="urn:nato:fft:protocols:nffi_ip3"

xmlns:ns2="urn:nato:fft:protocols:nffi13">

 <ns2:NFFIMessage>

 <ns2:track Id="BodyElem-3">

 <ns2:positionalData secClassification="1"

secPolicyName="urn:oid:1.2.3.4">

 <ns2:trackSource>

 <ns2:sourceSystem>

 <ns2:system>FFI</ns2:system>

 </ns2:sourceSystem>

 <ns2:transponderId>331-A1</ns2:transponderId>

 </ns2:trackSource>

 <ns2:dateTime>20090417141046</ns2:dateTime>

 <ns2:coordinates>

 <ns2:latitude>52.36605</ns2:latitude>

 <ns2:longitude>-2.117851</ns2:longitude>

 <ns2:altitude>2000.0</ns2:altitude>

 </ns2:coordinates>

 </ns2:positionalData>

 <ns2:identificationData secClassification="1"

secPolicyName="urn:oid:1.2.3.4">

 <ns2:unitSymbol>SFAPMFR--------</ns2:unitSymbol>

 <ns2:unitShortName>331-A1</ns2:unitShortName>

 </ns2:identificationData>

 40 FFI-rapport 2012/00117

 </ns2:track>

 <ns2:track Id="BodyElem-2">

 <ns2:positionalData secClassification="2"

secPolicyName="urn:oid:1.2.3.4">

 <ns2:trackSource>

 <ns2:sourceSystem>

 <ns2:system>FFI</ns2:system>

 </ns2:sourceSystem>

 <ns2:transponderId>331-A2</ns2:transponderId>

 </ns2:trackSource>

 <ns2:dateTime>20090417141045</ns2:dateTime>

 <ns2:coordinates>

 <ns2:latitude>52.35605</ns2:latitude>

 <ns2:longitude>-2.107851</ns2:longitude>

 <ns2:altitude>2000.0</ns2:altitude>

 </ns2:coordinates>

 </ns2:positionalData>

 <ns2:identificationData secClassification="2"

secPolicyName="urn:oid:1.2.3.4">

 <ns2:unitSymbol>SFAPMFR--------</ns2:unitSymbol>

 <ns2:unitShortName>331-A2</ns2:unitShortName>

 </ns2:identificationData>

 </ns2:track>

 <ns2:track Id="BodyElem-1">

 <ns2:positionalData secClassification="3"

secPolicyName="urn:oid:1.2.3.4">

 <ns2:trackSource>

 <ns2:sourceSystem>

 <ns2:system>FFI</ns2:system>

 </ns2:sourceSystem>

 <ns2:transponderId>331-A3</ns2:transponderId>

 </ns2:trackSource>

 <ns2:dateTime>20090417141045</ns2:dateTime>

 <ns2:coordinates>

 <ns2:latitude>52.34605</ns2:latitude>

 <ns2:longitude>-2.097851</ns2:longitude>

 <ns2:altitude>2000.0</ns2:altitude>

 </ns2:coordinates>

 </ns2:positionalData>

 <ns2:identificationData secClassification="3"

secPolicyName="urn:oid:1.2.3.4">

 <ns2:unitSymbol>SFAPMFR--------</ns2:unitSymbol>

 <ns2:unitShortName>331-A3</ns2:unitShortName>

 </ns2:identificationData>

 </ns2:track>

 </ns2:NFFIMessage>

 </pullNFFIResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

